1、重点强化训练(一)函数的图像与性质A组基础达标(建议用时:30分钟)一、选择题1设函数f (x)为偶函数,当x(0,)时,f (x)log2x,则f ()()【导学号:66482085】ABC2D2B因为函数f (x)是偶函数,所以f ()f ()log2.2已知f (x),g(x)分别是定义在R上的偶函数和奇函数,且f (x)g(x)x3x21,则f (1)g(1)()A3 B1 C1 D3C用“x”代替“x”,得f (x)g(x)(x)3(x)21,化简得f (x)g(x)x3x21,令x1,得f (1)g(1)1,故选C.3函数f (x)3xx2的零点所在的一个区间是()A(2,1) B
2、(1,0)C(0,1) D(1,2)C因为函数f (x)在定义域上递增,又f (2)32120,f (1)3120,f (0)300210,f (1)320,所以f (0)f (1)0,所以函数f (x)的零点所在区间是(0,1)4已知函数f (x)是定义在R上的偶函数,且在区间0,)上递增若实数a满足f (log2a)f (loga)2f (1),则a的取值范围是()A1,2 BC. D(0,2Cf (loga)f (log2a)f (log2a),原不等式可化为f (log2a)f (1)又f (x)在区间0,)上递增,0log2a1,即1a2.f (x)是偶函数,f (log2a)f (
3、1)又f (x)在区间(,0上单调递减,1log2a0,a1.综上可知a2.5(2017陕西质检(二)若f (x)是定义在(,)上的偶函数,任意x1,x20,)(x1x2),有0,则()【导学号:66482086】Af (3)f (1)f (2) Bf (1)f (2)f (3)Cf (2)f (1)f (3) Df (3)f (2)f (1)D由对任意的x1,x20,),0得函数f (x)为0,)上的减函数,又因为函数f (x)为偶函数,所以f (3)f (2)f (2)f (1),故选D.二、填空题6函数yf (x)在x2,2上的图像如图2所示,则当x2,2时,f (x)f (x)_.【导
4、学号:66482087】图20由题图可知,函数f (x)为奇函数,所以f (x)f (x)0.7若函数ylog2(ax22x1)的值域为R,则a的取值范围为_0,1设f (x)ax22x1,由题意知,f (x)取遍所有的正实数当a0时,f (x)2x1符合条件;当a0时,则解得0a1,所以0a1.8(2017银川质检)已知yf (x)是定义在R上的奇函数,在(0,)上是增函数,且f (2)0,则满足f (x1)0的x的取值范围是_.【导学号:66482088】(,1)(1,3)依题意当x(1,)时,f (x1)0f (2)的解集为x3,即1x3;当x(,1)时,f (x1)0f (2)的解集为
5、x1,即x1.综上所述,满足f (x1)0的x的取值范围是(,1)(1,3)三、解答题9已知函数f (x)2x,当m取何值时方程|f (x)2|m有一个解,两个解?解令F(x)|f (x)2|2x2|,G(x)m,画出F(x)的图像如图所示. 3分由图像看出,当m0或m2时,函数F(x)与G(x)的图像只有一个交点,原方程有一个解;9分当0m2时,函数F(x)与G(x)的图像有两个交点,原方程有两个解. 12分10函数f (x)mlogax(a0且a1)的图像过点(8,2)和(1,1)(1)求函数f (x)的解析式;(2)令g(x)2f (x)f (x1),求g(x)的最小值及取得最小值时x的
6、值解(1)由得3分解得m1,a2,故函数解析式为f (x)1log2x. 5分(2)g(x)2f (x)f (x1)2(1log2x)1log2(x1)log21(x1). 7分(x1)2224. 9分当且仅当x1,即x2时,等号成立而函数ylog2x在(0,)上递增,则log21log2411,故当x2时,函数g(x)取得最小值1. 12分B组能力提升(建议用时:15分钟)1(2017东北三省四市二联)已知函数f (x)是定义在R上的奇函数,且在0,)上是增函数,则不等式f (1)的解集为()A. B(0,e)C. D(e,)Cf (x)为R上的奇函数,则f f (ln x)f (ln x)
7、,所以|f (ln x)|,即原不等式可化为|f (ln x)|f (1),所以f (1)f (ln x)f (1),即f (1)f (ln x)f (1)又由已知可得f (x)在R上递增,所以1ln x1,解得xe,故选C.2已知函数f (x),g(x)分别是定义在R上的偶函数与奇函数,且g(x)f (x1),则f (2 019)的值为_0g(x)f (x1),由f (x),g(x)分别是偶函数与奇函数,得g(x)f (x1),f (x1)f (x1),即f (x2)f (x),f (x4)f (x),故函数f (x)是以4为周期的周期函数,则f (2 019)f (50541)f (1)g
8、(0)0.3函数f (x)的定义域为Dx|x0,且满足对于任意x1,x2D,有f (x1x2)f (x1)f (x2)(1)求f (1)的值;(2)判断f (x)的奇偶性并证明你的结论;(3)如果f (4)1,f (x1)2,且f (x)在(0,)上是增函数,求x的取值范围解(1)对于任意x1,x2D,有f (x1x2)f (x1)f (x2),令x1x21,得f (1)2f (1),f (1)0. 3分(2)f (x)为偶函数. 4分证明如下:令x1x21,有f (1)f (1)f (1),f (1)f (1)0.令x11,x2x有f (x)f (1)f (x),f (x)f (x),f (x)为偶函数. 7分(3)依题设有f (44)f (4)f (4)2,由(2)知,f (x)是偶函数,f (x1)2f (|x1|)f (16). 9分又f (x)在(0,)上是增函数,0|x1|16,解得15x17且x1,11分x的取值范围是x|15x17且x1. 12分