1、莆田一中高一数学练习题41在等差数列an中,a12,a3a510,则a7()A5 B8 C10 D142已知数列an为等差数列,其前n项和为Sn,若a36,S312,则公差d()A1 B2 C3 D.3设Sn为等差数列an的前n项和,若a11,a35,Sk2Sk36,则k的值为()A8 B7 C6 D54已知函数f(x)2x,等差数列an的公差为2.若f(a2a4a6a8a10)4,则f(a1)f(a2)f(a3)f(a10)()A0 B26 C22 D45已知Sn是等差数列an的前n项和,S100并且S110,若SnSk对nN*恒成立,则正整数k构成的集合为()A5 B6 C5,6 D76若
2、等差数列an满足a7a8a90,a7a100,S110,得S100a1a100a5a60,S110a1a112a60,故可知等差数列an是递减数列且a60,所以S5S6Sn,其中nN*,所以k5或6.6解析:a7a8a93a80,a80.a7a10a8a90,a9a85时,an0,|a1|a2|a15|(a1a2a3a4)(a5a6a15)20110130.9解:(1)当n1时,a4S12a11,即(a11)20,解得a11.当n2时,a4S22a214a12a2132a2,解得a23或a21(舍去)(2)a4Sn2an1,a4Sn12an11.得aa4an12an12an2(an1an),即(an1an)(an1an)2(an1an)数列an各项均为正数,an1an0,an1an2,数列an是首项为1,公差为2的等差数列an2n1.10解:(1)证明:bn,且an,bn1,bn1bn2.又b11,数列bn是首项为1,公差为2的等差数列(2)由(1)知数列bn的通项公式为bn1(n1)22n1,又bn,an.数列an的通项公式为an.