1、考点过关检测28 复数一、单项选择题12021新高考卷复数在复平面内对应的点所在的象限为()A第一象限B第二象限C第三象限D第四象限22022广东汕头模拟设复数z1,z2在复平面内的对应点关于虚轴对称,z13i,则z1z2()A10B10C8D83已知复数z1ai,z22i(i为虚数单位),若z1z2是纯虚数则实数a()AB.C2D342022辽宁葫芦岛模拟已知复数z(i是虚数单位),则|z|()A1B.C.D.52022山东青岛模拟已知复数z1i(i为虚数单位),为z的共轭复数,则()A1iB1iCiDi62022湖北武汉一中月考已知复数z满足2ai,|z|5,则正数a()A1B2C.D.7
2、2022福建泉州模拟若z1i,则()2020()2021的虚部为()AiBiC1D182022江苏如皋模拟已知复数z满足|z1|zi|,则在复平面上z对应点的轨迹为()A直线B线段C圆D等腰三角形二、多项选择题92022辽宁朝阳模拟下面是关于复数z(i为虚数单位)的命题,其中真命题为()A|z|Bzz21iCz的共轭复数为1iDz的虚部为1102022湖南师大附中月考已知实数a满足2i(i为虚数单位),设复数z(a1)(a1)i,则下列结论正确的是()Az为纯虚数Bz2为虚数Cz0Dz4112022山东德州模拟已知复数z1(i为虚数单位),下列说法正确的是()Az1对应的点在第三象限Bz1的虚
3、部为1Cz4D满足|z|z1|的复数z对应的点在以原点为圆心,半径为2的圆上122022湖南长郡中学月考下列命题为真命题的是()A若z1,z2互为共轭复数,则z1z2为实数B若R,则zRC复数的共轭复数为2iD关于复数z的方程z2(2i)zbi0(bR)有实数根,则b1三、填空题132022北师大实验中学月考若复数(ai)(34i)的实部与虚部相等,则实数a_.14已知i为虚数单位,复数z(2i3)(1ai)为实数,则z_.15已知O是复平面内的坐标原点,Z1,Z2两点对应的复数分别是12i,3i,则OZ1Z2的面积是_161748年,瑞士数学家欧拉发现了复指数函数和三角函数的关系,并写出以下
4、公式eixcosxisinx,这个公式在复变论中占有非常重要的地位,被誉为“数学中的天桥”根据此公式,则ei1_;(i)3_.考点过关检测28复数1答案:A解析:,所以该复数对应的点为,该点在第一象限2答案:A解析:z13i,z1,z2所对应的点关于虚轴对称,z23i,z1z29110.3答案:A解析:由已知得z1z2(ai)(2i)(2a1)(a2)i是纯虚数,所以2a10且a20,可得a.4答案:B解析:zi1,|z|.5答案:C解析:因为z1i,所以1i,所以i.6答案:A解析:2ai,z6a(23a)i,|z|5,5,解得正数a1.7答案:D解析:因为z1i,所以i,i,所以()202
5、0()2021i2020(i)20211i,故其虚部为1.8答案:A解析:设复数zxyi(x,yR),根据复数的几何意义知:|z1|表示复平面内点P(x,y)与点A(1,0)的距离,|zi|表示复平面内点P(x,y)与点B(0,1)的距离,因为|z1|zi|,即点P(x,y)到A,B两点间的距离相等,所以点P(x,y)在线段A,B的垂直平分线上,所以在复平面上z对应点的轨迹为直线9答案:AD解析:由已知z1i,|z|,zz21i(1i)21i2i1i,共轭复数为1i,z的虚部为1.其中真命题为AD,BC为假命题10答案:ACD解析:由已知,3ai(2i)(1i)3i,则a1,所以z2i为纯虚数
6、,z24为实数,因为2i,则z0,z4.11答案:AB解析:由题意,复数z11i,所以复数z1在复平面内对应的点(1,1)位于第三象限,所以A正确;由z11i,可得复数的虚部为1,所以B正确;由z(1i)4(1i)22(2i)24,所以C不正确;由|z1|,所以满足|z|z1|的复数z对应的点在以原点为圆心,半径为的圆上,所以D不正确12答案:ABD解析:设z1abi,z2abi,则z1z2a2b2为实数,A选项正确设aR,(a0),则zR,B选项正确2i,其共轭复数是2i,C选项错误设aR是方程的实根,则a22ab(a1)i0,a1,b1,D选项正确13答案:7解析:(ai)(34i)(3a4)(34a)i的实部与虚部相等,3a434a,即a7.14答案:解析:z(2i3)(1ai)(2i)(1ai)2a(2a1)i且zR,2a10,可得a,因此,z.15答案:解析:依题意可得Z1(1,2)、Z2(3,1)|OZ1|,|OZ2|,|Z1Z2|,所以|OZ1|2|Z1Z2|2|OZ2|2,所以OZ1Z1Z2,所以SOZ1Z2|OZ1|Z1Z2|.16答案:01解析:ei1cosisin1110,icosisinei,因此,33eicosisin1.5