1、高考资源网() 您身边的高考专家3.2.1 直线的点斜式方程 学案课前预习学案一、 预习目标通过预习同学们知道点斜式从斜率公式上进行一般化,变形,得到点斜式方程。什么是截距以及直线的斜截式方程。二、 预习内容 1、过定点P(x0,y0)的直线有多少条?倾斜角为定值的直线有多少条?2、确定一条直线需要几个独立的条件?学生回答:3、给出两个独立的条件,例如:一个点P1(2,4)和斜率k=2就能决定一条直线l。(1)你能在直线l上再找一点,并写出它的坐标吗?你是如何找的?(2)这条直线上的任意一点P(x,y)的坐标x,y满足什么特征呢? 三、提出疑惑疑惑点疑惑内容课内探究学案一、学习目标(1)理解直
2、线方程的点斜式、斜截式的形式特点和适用范围;(2)能正确利用直线的点斜式、斜截式公式求直线方程。(3)体会直线的斜截式方程与一次函数的关系.学习重点:直线的点斜式方程和斜截式方程。学习难点:直线的点斜式方程和斜截式方程的应用。二、学习过程(自主学习、合作探究、精讲点拨、有效训练)问题:(1)P1(x1,y1)的坐标满足方程吗? (2)直线上任意一点的坐标与此方程有什么关系? 讨论: 直线的点斜式方程能否表示平面上的所有直线?(引导学生从斜率的角度去考虑)结论:(1)轴所在直线的方程是什么?轴所在直线的方程是什么?(2)经过点且平行于轴(即垂直于轴)的直线方程是什么?(3)经过点且平行于轴(即垂
3、直于轴)的直线方程是什么?例1一条直线经过点P1(-2,3),斜率为2,求这条直线的方程。解:由直线的点斜式方程得y-3=2(x+2),即2x-y+7=0.变1:在例1中,若将“斜率为2”改为“倾斜角为45o”,求这条直线的方程;变2:在例1中,若将直线的倾斜角改为90o,这条直线的方程是什么?例2已知直线l的斜率为k,与y轴的交点是P(0,b),求直线l的方程。解:变式:(1)斜率是5,在y轴上的截距是4的直线方程。解:2思考情境2:P76,用计算机在同一直角坐标系中分别作出直线y=2,y=x+2,y= -x+2,y=3x+2,y= -3x+2的图象。问题4:直线y=kx+2有什么特点?用几
4、何画板演示。情境3:用计算机在同一直角坐标系中分别作出直线y=2 x,y=2x+1,y=2x-2,y=2x+4,y=-2x-4的图象.问题5:直线y=2x+b有什么特点?反思总结直线的点斜式的所需要的条件,和坐标轴垂直的直线方程是什么。经过特殊化后得到斜截式,它的几何意义是什么。什么是截距。当堂检测1已知直线经过点,斜率为,求直线的点斜式和斜截式.2方程表示过点、斜率是、倾斜角是、在y轴上的截距是的直线。3已知直线的点斜式方程是y2=(x1),那么此直线经过定点_,直线的斜率是_,倾斜角是_.课后练习与提高(视学生学习情况添加)1经过点(- ,2)倾斜角是30度的直线的方程是 (A)y = (
5、 x2) (B)y+2= (x ) (C)y2= (x )(D)y2= (x ) 2已知直线方程y3= (x4),则这条直线经过的已知 点,倾斜角分别是 (A)(4,3);/ 3 (B)(3,4);/ 6 (C)(4,3);/ 6 (D)(4,3);/ 3 3直线方程可表示成点斜式方程的条件是 (A)直线的斜率存在 (B)直线的斜率不存在 (C)直线不过原点 (D)不同于上述答案4直线l经过点P0(2, 3),且倾斜角a45,求直线l的点斜式方程,并画出直线l.5.已知直线的点斜式方程是y2=x1,那么直线的斜率是_,倾斜角是_, 此直线必过定点_;6已知直线的方程为,求过点且垂直于的直线方程. - 4 - 版权所有高考资源网