1、奇妙的组合之奎伯的杯子问题a巴尼在饮店工作,他给他的两位顾客表演10个杯子游戏。b巴尼:这有一排10个杯子,前5个杯子装着可乐,后5个杯子空着,你能挪4个杯子,使满杯和空杯间隔排列吗?c巴尼:好,只需第2个杯子和第7个杯子交换位置,第4个杯子和第9个杯子交换位置。d奎伯教授总想一些奇特的方法,碰巧听到了这个问题。奎伯教授:为什么要挪4个杯子,我们能否只动2个杯子?e奎伯教授:很简单,把第2个杯中的可乐倒进第7个杯中,把第4个杯中的可乐倒进第9个杯中。不寻常的奎伯尽管奎伯教授通过巧辩解决了这个问题,但普遍问题并不像这个问题这么平常。例如,同样的问题,如果是100个满杯和100个空杯需要对调多少次
2、才能使满杯和空杯间隔排列?用200个杯子做实验不很实际,我们首先分析较小的n值的解决方法,这里n是满杯或空杯数。你可以用两种颜色的记号来解题(或者牌的正反面、硬币的正反面、不同面值的硬币等等)当n=1时无解。n=2时显然只对调一次。n=3时也对调一次。进一步努力,你可以发现简单的公式,n是偶数时,对调数为n/2。n是奇数时,为(n1)/2。所以,如果是100个满杯和100个空杯,需要对调50次。这需要移动100个杯子,奎伯的幽默作法把移动杯数减少了一半。又有一个类似的分隔同题,但比较难解。在同一排中有n个一类物体,相邻的是n个另一类物体(如上面用玻璃杯、记号、牌等来表示)你还是要把这一排列变为
3、互相间隔状态,但我们移动原则不同了。我们必须移动一对记号放到队列中任何空白处,移动中不能改变这两个记号的顺序。例如,这是n=3时的做法:XXXOOOXOOOXXX00XOXOXOXOX一般的解法是什么呢?n=1时无解。你很快也发现,n=2时也无解。对所有大于2的n,最小的移动次数是n。当n=4时,解决这个同题就很不易,或许你已经解决了,或许当n大于等于3时你能用公式来表示这个问题的解。这些问题变化一下,可以产生一些其它的难题:(1)规则同前,只是当你移动一对记号时,如果是不同颜色的,在移动前交换它们的位置。也就是黑红对在移动前变为红黑对,8个记号移动5次可以完成,10个记号移动5次也可以完成。
4、我们还不知道一般的解决方法,或许你能找到。(2)规则和原题一样,只是一种颜色的记号有n个,另一种颜色的记号有n+1个,并且只有颜色不同的一对才能移动。可以证明:无论n为何值,都需移动n2次,且这是最小的移动次数。“教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。只是更早的“先生”概念并非源于教书,最初出现的“先生”一词也并非有传授知识那般的含义。孟子中的“先生何为出此言也?”;论语中的“有酒食,先生馔”;国策中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。其实国策中本身就有“
5、先生长者,有德之称”的说法。可见“先生”之原意非真正的“教师”之意,倒是与当今“先生”的称呼更接近。看来,“先生”之本源含义在于礼貌和尊称,并非具学问者的专称。称“老师”为“先生”的记载,首见于礼记?曲礼,有“从于先生,不越礼而与人言”,其中之“先生”意为“年长、资深之传授知识者”,与教师、老师之意基本一致。(3)三种不同颜色的记号,移动每对相邻的记号使三种颜色相互间隔,如果n=3(即总共9个记号)需移5次。在以上的变化中,我们都设变化为最后排列时排列中没有空隙,如果允许空隙存住,移动4次就能得到结果。观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理
6、解的观察内容。随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。看得清才能说得正确。在观察过程中指导。我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。有的孩子说“乌云跑得飞快。”我加以肯定说“这是乌云滚滚。”当幼儿看到闪电时,我告诉他“这叫电光闪闪
7、。”接着幼儿听到雷声惊叫起来,我抓住时机说:“这就是雷声隆隆。”一会儿下起了大雨,我问:“雨下得怎样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌握“倾盆大雨”这个词。雨后,我又带幼儿观察晴朗的天空,朗诵自编的一首儿歌:“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。”这样抓住特征见景生情,幼儿不仅印象深刻,对雷雨前后气象变化的词语学得快,记得牢,而且会应用。我还在观察的基础上,引导幼儿联想,让他们与以往学的词语、生活经验联系起来,在发展想象力中发展语言。如啄木鸟的嘴是长长的,尖尖的,硬硬的,像医生用的手术刀样,给大树开刀治病。通过联想,幼儿能够生动形象地描述观察对象。一些变化
8、的假设迄今还没有提出来,更不必说解决了。比如,在以上的变化中,一次移动3个或更多相邻记号。“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。其中“师傅”更早则意指春秋时国君的老师。说文解字中有注曰:“师教人以道者之称也”。“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。“老师”的原意并非由“老”而形容“师”。“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。“老”“师”连用最初见于史记,有“荀卿最为老师”之说法。慢慢“老师”之说也不再有年龄的限制,老少皆可适用。只是司马迁笔下的“老师”当然不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。还有,如果先移动1个记号,再移动2个相邻的记号,接下来是3个以至4个等等。已知各有n个两种颜色的记号,移动n次能解决问题吗?第 3 页