1、第一节随机抽样热点命题分析学科核心素养对于随机抽样,主要考查两种抽样方法,尤其是分层抽样,一般以选择题和填空题的形式出现.本节通过两种抽样方法,考查考生的数据分析、逻辑推理核心素养.授课提示:对应学生用书第215页知识点简单随机抽样、分层抽样1简单随机抽样(1)抽取方式:逐个不放回抽取;(2)每个个体被抽到的概率相等;(3)常用方法:抽签法和随机数法2分层抽样(1)在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样(2)分层抽样的应用范围当总体是由差异明显的几个部分组成时,往往选用分层抽样 温馨提醒
2、 1分层抽样中,易忽视每层抽取的个体的比例是相同的,即.2不论哪种抽样方法,总体中的每一个个体入样的概率是相同的1一段高速公路有300个太阳能标志灯,其中进口的有30个,联合研制的有75个,国产的有195个,为了掌握每个标志灯的使用情况,要从中抽取一个容量为20的样本,若采用分层抽样的方法,抽取的进口的标志灯的数量为()A2B3C5D13解析:202.答案:A2利用简单随机抽样,从n个个体中抽取一个容量为10的样本若第二次抽取时,余下的每个个体被抽到的概率为,则在整个抽样过程中,每个个体被抽到的概率为()A.B C.D解析:,解得n28.故.答案:C3(2021东北三校联考)某工厂生产甲、乙、
3、丙三种型号的产品,产品数量之比为357,现用分层抽样的方法抽出容量为n的样本,其中甲种产品有18件,则样本容量n()A54B90 C45D126答案:B授课提示:对应学生用书第216页题型一简单随机抽样自主探究1下列抽样试验中,适合用抽签法的有()A从某厂生产的5 000件产品中抽取600件进行质量检验B从某厂生产的两箱(每箱18件)产品中抽取6件进行质量检验C从甲、乙两厂生产的两箱(每箱18件)产品中抽取6件进行质量检验D从某厂生产的5 000件产品中抽取10件进行质量检验答案:B2总体由编号为01,02,19,20的20个个体组成利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的
4、第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()7816657208026314070243699728019832049234493582003623486969387481A08B07C02D01答案:D3“七乐彩”的中奖号码是从分别标有1,2,30的30个小球中逐个不放回地摇出7个小球来按规则确定中奖情况,这种从30个号码中选7个号码的抽样方法是()A分层抽样法B抽签法C随机数法D其他抽样方法答案:B简单随机抽样的特点(1)抽取的个体数较少;(2)是逐个抽取;(3)是不放回抽取;(4)是等可能抽取只有四个特点都满足的抽样才是简单随机抽样题型二分层抽样合作探
5、究例(1)(2021河南名校联考)九章算术第三章“衰分”中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱,欲以钱数多少衰出之,问各几何”其意为:今有甲带了560钱,乙带了350钱,丙带了180钱,三人一起出关,共需要交关税100钱,依照钱的多少按比例出钱,则丙应出_钱(所得结果四舍五入,保留整数)(2)某学校三个兴趣小组的学生人数分布如下表(每名同学只参加一个小组)(单位:人).篮球组书画组乐器组高一4530a高二151020学校要对这三个小组的活动效果进行抽样调查,按小组分层抽样的方法,从参加这三个兴趣小组的学生中抽取30人,结果篮球组被抽出12人,
6、则a的值为_答案(1)17(2)30分层抽样中的计算问题分层抽样满足“”,即“或n1n2nN1N2N”,据此在已知每层间的个体数量或数量比、样本容量、总体数量中的两个时,就可以求出第三个.题组突破1某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为()类别人数老年教师900中年教师1 800青年教师1 600合计4 300A.90B100C180D300答案:C2甲、乙两套设备生产的同类型产品共4 800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测若样本中有50件产品由甲设备生产,则乙设备
7、生产的产品总数为_件答案:1 8003高一和高二两个年级的同学参加了数学竞赛,高一年级有450人,高二年级有350人,通过分层随机抽样的方法抽取了160个样本,得到两年级的竞赛成绩分别为80分和90分,则(1)高一、高二抽取的样本量分别为_;(2)高一和高二数学竞赛的平均分约为_分解析:(1)由题意可得高一年级抽取的样本量为16090,高二年级抽取的样本量为16070.(2)高一和高二数学竞赛的平均分约为809084.375(分)答案:(1)90,70(2)84.375抽样方法中的核心素养数据分析、数学运算分层抽样的创新应用例(2021湖南四校摸底调研)某家电公司销售部门共有200名销售员,每
8、年部门对每名销售员都有1 400万元的年度销售任务已知这200名销售员去年的销售额都在区间2,22(单位:百万元)内,现将其分成5组,第1组、第2组、第3组、第4组、第5组对应的区间分别为2,6),6,10),10,14),14,18),18,22,并绘制出如下的频率分布直方图(1)求a的值,并计算完成年度任务的人数;(2)用分层抽样的方法从这200名销售员中抽取容量为25的样本,求这5组分别应抽取的人数;(3)现从(2)中完成年度任务的销售员中随机选取2名,奖励海南三亚三日游,求获得此奖励的2名销售员在同一组的概率解析(1)(0.020.080.092a)41,a0.03,完成年度任务的人数
9、为20.03420048.(2)第1组应抽取的人数为0.024252,第2组应抽取的人数为0.084258,第3组应抽取的人数为0.094259,第4组应抽取的人数为0.034253,第5组应抽取的人数为0.034253.(3)在(2)中完成年度任务的销售员中,第4组有3人,记这3人分别为A1,A2,A3;第5组有3人,记这3人分别为B1,B2,B3.从这6人中随机选取2名,所有的基本事件为A1A2,A1A3,A1B1,A1B2,A1B3,A2A3,A2B1,A2B2,A2B3,A3B1,A3B2,A3B3,B1B2,B1B3,B2B3,共有15个基本事件,获得此奖励的2名销售员在同一组所包含
10、的基本事件有6个,故所求概率P.解决分层抽样与样本数据分析问题的注意点(1)弄清分层抽样问题中每层的数据(2)求解概率时注意概率类型的判断.对点训练(2021重庆九校联盟模拟)某社区为了解该社区退休老人每天的平均户外活动时间,从该社会退休老人中随机抽取了100位老人进行调查,获得了每人每天的平均户外活动时间(单位:时),活动时间按照0,0.5),0.5,1),4,4.5分成9组,制成样本的频率分布直方图如图所示(1)求图中a的值;(2)估计该社区退休老人每人每天的平均户外活动时间的中位数;(3)在1,1.5),1.5,2)这两组中采用分层抽样的方法抽取7人,再从这7人中随机抽取2人,求抽取的2
11、人恰好在同一个组的概率解析:(1)由频率分布直方图,可知平均户外活动时间在0,0.5)内的频率为0.080.50.04.同理,平均户外活动时间在0.5,1),1.5,2),2,2.5),3,3.5),3.5,4),4,4.5内的频率分别为0.08,0.20,0.25,0.07,0.04,0.02,由1(0.040.080.200.250.070.040.02)0.5a0.5a,解得a0.30.(2)设中位数为m时因为前5组的频率之和为0.040.080.150.200.250.720.5,而前4组的频率之和为0.040.080.150.200.470.5,所以2m2.5.所以0.50(m2)0.50.47,解得m2.06.故可估计该社区退休老人每人每天的平均户外活动时间的中位数为2.06时(3)由题意得平均户外活动时间在1,1.5),1.5,2)内的人数分别为15,20,按分层抽样的方法在1,1.5),1.5,2)内分别抽取3人、4人,再从7人中随机抽取2人,共有21种方法,抽取的两人恰好都在同一个组有9种方法,故抽取的2人恰好在同一个组的概率P.