收藏 分享(赏)

《新步步高》2017版高考数学人教版(鲁、京、津专版理)一轮复习文档:第三章 导数及其应用 3.2.2 WORD版含答案.docx

上传人:高**** 文档编号:222010 上传时间:2024-05-26 格式:DOCX 页数:15 大小:182.28KB
下载 相关 举报
《新步步高》2017版高考数学人教版(鲁、京、津专版理)一轮复习文档:第三章 导数及其应用 3.2.2 WORD版含答案.docx_第1页
第1页 / 共15页
《新步步高》2017版高考数学人教版(鲁、京、津专版理)一轮复习文档:第三章 导数及其应用 3.2.2 WORD版含答案.docx_第2页
第2页 / 共15页
《新步步高》2017版高考数学人教版(鲁、京、津专版理)一轮复习文档:第三章 导数及其应用 3.2.2 WORD版含答案.docx_第3页
第3页 / 共15页
《新步步高》2017版高考数学人教版(鲁、京、津专版理)一轮复习文档:第三章 导数及其应用 3.2.2 WORD版含答案.docx_第4页
第4页 / 共15页
《新步步高》2017版高考数学人教版(鲁、京、津专版理)一轮复习文档:第三章 导数及其应用 3.2.2 WORD版含答案.docx_第5页
第5页 / 共15页
《新步步高》2017版高考数学人教版(鲁、京、津专版理)一轮复习文档:第三章 导数及其应用 3.2.2 WORD版含答案.docx_第6页
第6页 / 共15页
《新步步高》2017版高考数学人教版(鲁、京、津专版理)一轮复习文档:第三章 导数及其应用 3.2.2 WORD版含答案.docx_第7页
第7页 / 共15页
《新步步高》2017版高考数学人教版(鲁、京、津专版理)一轮复习文档:第三章 导数及其应用 3.2.2 WORD版含答案.docx_第8页
第8页 / 共15页
《新步步高》2017版高考数学人教版(鲁、京、津专版理)一轮复习文档:第三章 导数及其应用 3.2.2 WORD版含答案.docx_第9页
第9页 / 共15页
《新步步高》2017版高考数学人教版(鲁、京、津专版理)一轮复习文档:第三章 导数及其应用 3.2.2 WORD版含答案.docx_第10页
第10页 / 共15页
《新步步高》2017版高考数学人教版(鲁、京、津专版理)一轮复习文档:第三章 导数及其应用 3.2.2 WORD版含答案.docx_第11页
第11页 / 共15页
《新步步高》2017版高考数学人教版(鲁、京、津专版理)一轮复习文档:第三章 导数及其应用 3.2.2 WORD版含答案.docx_第12页
第12页 / 共15页
《新步步高》2017版高考数学人教版(鲁、京、津专版理)一轮复习文档:第三章 导数及其应用 3.2.2 WORD版含答案.docx_第13页
第13页 / 共15页
《新步步高》2017版高考数学人教版(鲁、京、津专版理)一轮复习文档:第三章 导数及其应用 3.2.2 WORD版含答案.docx_第14页
第14页 / 共15页
《新步步高》2017版高考数学人教版(鲁、京、津专版理)一轮复习文档:第三章 导数及其应用 3.2.2 WORD版含答案.docx_第15页
第15页 / 共15页
亲,该文档总共15页,全部预览完了,如果喜欢就下载吧!
资源描述

1、课时2导数与函数的极值、最值题型一用导数解决函数极值问题命题点1根据函数图象判断极值例1设函数f(x)在R上可导,其导函数为f(x),且函数y(1x)f(x)的图象如图所示,则下列结论中一定成立的是()A函数f(x)有极大值f(2)和极小值f(1)B函数f(x)有极大值f(2)和极小值f(1)C函数f(x)有极大值f(2)和极小值f(2)D函数f(x)有极大值f(2)和极小值f(2)答案D解析由题图可知,当x0;当2x1时,f(x)0;当1x2时,f(x)2时,f(x)0.由此可以得到函数f(x)在x2处取得极大值,在x2处取得极小值命题点2求函数的极值例2已知函数f(x)ax33x21(aR

2、且a0),求函数f(x)的极大值与极小值解由题设知a0,f(x)3ax26x3ax.令f(x)0得x0或.当a0时,随着x的变化,f(x)与f(x)的变化情况如下:x(,0)0(0,)(,)f(x)00f(x)极大值极小值f(x)极大值f(0)1,f(x)极小值f1.当a0时,随着x的变化,f(x)与f(x)的变化情况如下:x(,)(,0)0(0,)f(x)00f(x)极小值极大值f(x)极大值f(0)1,f(x)极小值f1.综上,f(x)极大值f(0)1,f(x)极小值f1.命题点3已知极值求参数例3(1)已知f(x)x33ax2bxa2在x1时有极值0,则ab_.(2)若函数f(x)x2x

3、1在区间(,3)上有极值点,则实数a的取值范围是()A(2,) B2,)C(2,) D2,)答案(1)7(2)C解析(1)由题意得f(x)3x26axb,则解得或经检验当a1,b3时,函数f(x)在x1处无法取得极值,而a2,b9满足题意,故ab7.(2)若函数f(x)在区间(,3)上无极值,则当x(,3)时,f(x)x2ax10恒成立或当x(,3)时,f(x)x2ax10恒成立当x(,3)时,yx的值域是2,);当x(,3)时,f(x)x2ax10,即ax恒成立,a2;当x(,3)时,f(x)x2ax10,即ax恒成立,a.因此要使函数f(x)在(,3)上有极值点,实数a的取值范围是(2,)

4、思维升华(1)求函数f(x)极值的步骤:确定函数的定义域;求导数f(x);解方程f(x)0,求出函数定义域内的所有根;列表检验f(x)在f(x)0的根x0左右两侧值的符号,如果左正右负,那么f(x)在x0处取极大值,如果左负右正,那么f(x)在x0处取极小值(2)若函数yf(x)在区间(a,b)内有极值,那么yf(x)在(a,b)内绝不是单调函数,即在某区间上单调函数没有极值(1)函数y2x的极大值是_(2)设f(x)ln(1x)xax2,若f(x)在x1处取得极值,则a的值为_答案(1)3(2)解析(1)y2,令y0,得x1.当x0;当x1时,y0.当x1时,y取极大值3.(2)由题意知,f

5、(x)的定义域为(1,),且f(x)2ax1,由题意得:f(1)0,则2a2a10,得a,又当a时,f(x),当0x1时,f(x)1时,f(x)0,所以f(1)是函数f(x)的极小值,所以a.题型二用导数求函数的最值例4已知aR,函数f(x)ln x1.(1)当a1时,求曲线yf(x)在点(2,f(2)处的切线方程;(2)求f(x)在区间(0,e上的最小值解(1)当a1时,f(x)ln x1,x(0,),所以f(x),x(0,)因此f(2),即曲线yf(x)在点(2,f(2)处的切线斜率为.又f(2)ln 2,所以曲线yf(x)在点(2,f(2)处的切线方程为y(ln 2)(x2),即x4y4

6、ln 240.(2)因为f(x)ln x1,所以f(x).令f(x)0,得xa.若a0,则f(x)0,f(x)在区间(0,e上单调递增,此时函数f(x)无最小值若0ae,当x(0,a)时,f(x)0,函数f(x)在区间(a,e上单调递增,所以当xa时,函数f(x)取得最小值ln a.若ae,则当x(0,e时,f(x)0,函数f(x)在区间(0,e上单调递减,所以当xe时,函数f(x)取得最小值.综上可知,当a0时,函数f(x)在区间(0,e上无最小值;当0a),当x(2,0)时,f(x)的最小值为1,则a的值等于()A. B. C. D1答案D解析由题意知,当x(0,2)时,f(x)的最大值为

7、1.令f(x)a0,得x,当0x0;当x时,f(x)0)的导函数yf(x)的两个零点为3和0.(1)求f(x)的单调区间;(2)若f(x)的极小值为e3,求f(x)在区间5,)上的最大值解(1)f(x).令g(x)ax2(2ab)xbc,因为ex0,所以yf(x)的零点就是g(x)ax2(2ab)xbc的零点,且f(x)与g(x)符号相同又因为a0,所以3x0,即f(x)0,当x0时,g(x)0,即f(x)5f(0),所以函数f(x)在区间5,)上的最大值是5e5.思维升华求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,

8、然后借助图象观察得到函数的最值已知函数f(x)x3ax24在x2处取得极值,若m、n1,1,则f(m)f(n)的最小值是()A13 B15C10 D15答案A解析对函数f(x)求导得f(x)3x22ax,由函数f(x)在x2处取得极值知f(2)0,即342a20,a3.由此可得f(x)x33x24,f(x)3x26x,易知f(x)在1,0)上单调递减,在0,1上单调递增,当m1,1时,f(m)minf(0)4.又f(x)3x26x的图象开口向下,且对称轴为x1,当n1,1时,f(n)minf(1)9.故f(m)f(n)的最小值为13.3利用导数求函数的最值问题典例(12分)已知函数f(x)ln

9、 xax (aR)(1)求函数f(x)的单调区间;(2)当a0时,求函数f(x)在1,2上的最小值思维点拨(1)已知函数解析式求单调区间,实质上是求f(x)0,f(x)0),当a0时,f(x)a0,即函数f(x)的单调递增区间为(0,)2分当a0时,令f(x)a0,可得x,当0x0;当x时,f(x)0时,函数f(x)的单调递增区间为,单调递减区间为.5分(2)当1,即a1时,函数f(x)在区间1,2上是减函数,所以f(x)的最小值是f(2)ln 22a.6分当2,即0a时,函数f(x)在区间1,2上是增函数,所以f(x)的最小值是f(1)a.7分当12,即a1时,函数f(x)在上是增函数,在上

10、是减函数又f(2)f(1)ln 2a,所以当aln 2时,最小值是f(1)a;当ln 2a1时,最小值为f(2)ln 22a.11分综上可知,当0a0,函数单调递增;当x(1,e时,y0,函数单调递减当x1时,函数取得最大值1.3设函数f(x)在R上可导,其导函数为f(x),且函数f(x)在x2处取得极小值,则函数yxf(x)的图象可能是()答案C解析由函数f(x)在x2处取得极小值,可得f(2)0,且当x(a,2)(a2)时,f(x)单调递减,即f(x)2)时,f(x)单调递增,即f(x)0.所以函数yxf(x)在区间(a,2)(a2)内的函数值为正,在区间(2,b)(2b0,即a23a18

11、0.a6或a0时,ex1,aex0)的极大值是正数,极小值是负数,则a的取值范围是_答案(,)解析f(x)3x23a23(xa)(xa),由f(x)0得xa,当axa时,f(x)a或x0,函数递增f(a)a33a3a0且f(a)a33a3a.a的取值范围是(,)9设f(x)a(x5)26ln x,其中aR,曲线yf(x)在点(1,f(1)处的切线与y轴相交于点(0,6)(1)确定a的值;(2)求函数f(x)的单调区间与极值解(1)因为f(x)a(x5)26ln x,所以f(x)2a(x5).令x1,得f(1)16a,f(1)68a,所以曲线yf(x)在点(1,f(1)处的切线方程为y16a(6

12、8a)(x1),由点(0,6)在切线上,可得616a8a6,故a.(2)由(1)知,f(x)(x5)26ln x(x0),f(x)x5.令f(x)0,解得x2或3.当0x3时,f(x)0,故f(x)在(0,2),(3,)上为增函数;当2x3时,f(x)0,故f(x)在(2,3)上为减函数由此可知f(x)在x2处取得极大值f(2)6ln 2,在x3处取得极小值f(3)26ln 3.综上,f(x)的单调增区间为(0,2),(3,),单调减区间为(2,3),f(x)的极大值为6ln 2,极小值为26ln 3.10已知函数f(x)(xk)ex.(1)求f(x)的单调区间;(2)求f(x)在区间0,1上

13、的最小值解(1)由题意知f(x)(xk1)ex.令f(x)0,得xk1.f(x)与f(x)随x的变化情况如下表:x(,k1)k1(k1,)f(x)0f(x)ek1所以,f(x)的单调递减区间是(,k1);单调递增区间是(k1,)(2)当k10,即k1时,f(x)在0,1上单调递增,所以f(x)在区间0,1上的最小值为f(0)k;当0k11,即1k2时,f(x)在0,k1上单调递减,在k1,1上单调递增,所以f(x)在区间0,1上的最小值为f(k1)ek1;当k11,即k2时,f(x)在0,1上单调递减,所以f(x)在区间0,1上的最小值为f(1)(1k)e.综上,当k1时,f(x)在0,1上的

14、最小值为f(0)k;当1k1,则不等式exf(x)ex1的解集是()Ax|x0 Bx|x0Cx|x1 Dx|x1或0x1,可得到g(x)0,所以g(x)为R上的增函数;又g(0)e0f(0)e010,所以exf(x)ex1,即g(x)0的解集为x|x012.若函数yf(x)的导函数yf(x)的图象如图所示,则yf(x)的图象可能为()答案C解析根据f(x)的符号,f(x)图象应该是先下降后上升,最后下降,排除A、D;从适合f(x)0的点可以排除B.13函数f(x)x33axb(a0)的极大值为6,极小值为2,则f(x)的单调递减区间是_答案(1,1)解析令f(x)3x23a0,得x,则f(x)

15、,f(x)随x的变化情况如下表:x(,)(,)(,)f(x)00f(x)极大值极小值从而解得所以f(x)的单调递减区间是(1,1)14若函数f(x)x33x在(a,6a2)上有最小值,则实数a的取值范围是_答案2,1)解析f(x)3x230,得x1,且x1为函数的极小值点,x1为函数的极大值点函数f(x)在区间(a,6a2)上有最小值,则函数f(x)极小值点必在区间(a,6a2)内,即实数a满足a16a2且f(a)a33af(1)2.解a16a2,得a0,知ax22ax10在R上恒成立,即4a24a4a(a1)0,由此并结合a0,知0a1.所以a的取值范围为a|00,当且仅当2e2x2e2x,即x0时,“”成立故f(x)在R上为增函数(3)由(1)知f(x)2e2x2e2xc,而2e2x2e2x24,当x0时等号成立下面分三种情况进行讨论:当c0,此时f(x)无极值;当c4时,对任意x0,f(x)2e2x2e2x40,此时f(x)无极值;当c4时,令e2xt,注意到方程2tc0有两根t10,t20,即f(x)0有两个根x1ln t1,x2ln t2.当x1xx2时,f(x)x2时,f(x)0,当x0,从而f(x)在xx1处取得极大值,在xx2处取得极小值综上,若f(x)有极值,则c的取值范围为(4,)

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3