收藏 分享(赏)

2018版高中数学(人教A版 必修3)教师用书:第3章 章末综合测评3 WORD版含解析.doc

上传人:高**** 文档编号:206374 上传时间:2024-05-26 格式:DOC 页数:24 大小:612KB
下载 相关 举报
2018版高中数学(人教A版 必修3)教师用书:第3章 章末综合测评3 WORD版含解析.doc_第1页
第1页 / 共24页
2018版高中数学(人教A版 必修3)教师用书:第3章 章末综合测评3 WORD版含解析.doc_第2页
第2页 / 共24页
2018版高中数学(人教A版 必修3)教师用书:第3章 章末综合测评3 WORD版含解析.doc_第3页
第3页 / 共24页
2018版高中数学(人教A版 必修3)教师用书:第3章 章末综合测评3 WORD版含解析.doc_第4页
第4页 / 共24页
2018版高中数学(人教A版 必修3)教师用书:第3章 章末综合测评3 WORD版含解析.doc_第5页
第5页 / 共24页
2018版高中数学(人教A版 必修3)教师用书:第3章 章末综合测评3 WORD版含解析.doc_第6页
第6页 / 共24页
2018版高中数学(人教A版 必修3)教师用书:第3章 章末综合测评3 WORD版含解析.doc_第7页
第7页 / 共24页
2018版高中数学(人教A版 必修3)教师用书:第3章 章末综合测评3 WORD版含解析.doc_第8页
第8页 / 共24页
2018版高中数学(人教A版 必修3)教师用书:第3章 章末综合测评3 WORD版含解析.doc_第9页
第9页 / 共24页
2018版高中数学(人教A版 必修3)教师用书:第3章 章末综合测评3 WORD版含解析.doc_第10页
第10页 / 共24页
2018版高中数学(人教A版 必修3)教师用书:第3章 章末综合测评3 WORD版含解析.doc_第11页
第11页 / 共24页
2018版高中数学(人教A版 必修3)教师用书:第3章 章末综合测评3 WORD版含解析.doc_第12页
第12页 / 共24页
2018版高中数学(人教A版 必修3)教师用书:第3章 章末综合测评3 WORD版含解析.doc_第13页
第13页 / 共24页
2018版高中数学(人教A版 必修3)教师用书:第3章 章末综合测评3 WORD版含解析.doc_第14页
第14页 / 共24页
2018版高中数学(人教A版 必修3)教师用书:第3章 章末综合测评3 WORD版含解析.doc_第15页
第15页 / 共24页
2018版高中数学(人教A版 必修3)教师用书:第3章 章末综合测评3 WORD版含解析.doc_第16页
第16页 / 共24页
2018版高中数学(人教A版 必修3)教师用书:第3章 章末综合测评3 WORD版含解析.doc_第17页
第17页 / 共24页
2018版高中数学(人教A版 必修3)教师用书:第3章 章末综合测评3 WORD版含解析.doc_第18页
第18页 / 共24页
2018版高中数学(人教A版 必修3)教师用书:第3章 章末综合测评3 WORD版含解析.doc_第19页
第19页 / 共24页
2018版高中数学(人教A版 必修3)教师用书:第3章 章末综合测评3 WORD版含解析.doc_第20页
第20页 / 共24页
2018版高中数学(人教A版 必修3)教师用书:第3章 章末综合测评3 WORD版含解析.doc_第21页
第21页 / 共24页
2018版高中数学(人教A版 必修3)教师用书:第3章 章末综合测评3 WORD版含解析.doc_第22页
第22页 / 共24页
2018版高中数学(人教A版 必修3)教师用书:第3章 章末综合测评3 WORD版含解析.doc_第23页
第23页 / 共24页
2018版高中数学(人教A版 必修3)教师用书:第3章 章末综合测评3 WORD版含解析.doc_第24页
第24页 / 共24页
亲,该文档总共24页,全部预览完了,如果喜欢就下载吧!
资源描述

1、章末分层突破自我校对P(A)P(B)P(A)P(B)1随机事件的概率1.有关事件的概念(1)必然事件:在条件S下,一定会发生的事件,叫做相对于条件S的必然事件,简称必然事件(2)不可能事件:在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件,简称不可能事件(3)确定事件:必然事件与不可能事件统称为相对于条件S的确定事件,简称确定事件(4)随机事件:在条件S下可能发生也可能不发生的事件,叫做相对于条件S的随机事件,简称随机事件(5)事件的表示方法:确定事件和随机事件一般用大写字母A,B,C,表示2对于概率的定义应注意以下几点(1)求一个事件的概率的基本方法是通过大量的重复试验(2)只有

2、当频率在某个常数附近摆动时,这个常数才叫做事件A的概率(3)概率是频率的稳定值,而频率是概率的近似值(4)概率反映了随机事件发生的可能性的大小(5)必然事件的概率为1,不可能事件的概率为0,故0P(A)1.对一批U盘进行抽检,结果如下表:抽出件数a50100200300400500次品件数b345589次品频率(1)计算表中次品的频率;(2)从这批U盘中任抽一个是次品的概率约是多少?(3)为保证买到次品的顾客能够及时更换,要销售2 000个U盘,至少需进货多少个U盘?【精彩点拨】结合频率的定义进行计算填表,并用频率估计概率【规范解答】(1)表中次品频率从左到右依次为0.06,0.04,0.02

3、5,0.017, 0.02,0.018.(2)当抽取件数a越来越大时,出现次品的频率在0.02附近摆动,所以从这批U盘中任抽一个是次品的概率约是0.02.(3)设需要进货x个U盘,为保证其中有2 000个正品U盘,则x(10.02)2 000,因为x是正整数,所以x2 041,即至少需进货2 041个U盘再练一题1某射击运动员为备战奥运会,在相同条件下进行射击训练,结果如下:射击次数n102050100200500击中靶心次数m8194492178455(1)该射击运动员射击一次,击中靶心的概率大约是多少?(2)假设该射击运动员射击了300次,则击中靶心的次数大约是多少?(3)假如该射击运动员

4、射击了300次,前270次都击中靶心,那么后30次一定都击不中靶心吗?(4)假如该射击运动员射击了10次,前9次中有8次击中靶心,那么第10次一定击中靶心吗?【解】(1)由题意,击中靶心的频率分别为0.8,0.95,0.88,0.92,0.89,0.91,当射击次数越来越大时,击中靶心的频率在0.9附近摆动,故概率约为0.9.(2)击中靶心的次数大约为3000.9270(次)(3)由概率的意义,可知概率是个常数,不因试验次数的变化而变化后30次中,每次击中靶心的概率仍是0.9,所以不一定击中靶心(4)不一定互斥事件与对立事件1.对互斥事件与对立事件的概念的理解(1)互斥事件是不可能同时发生的两

5、个事件;对立事件除要求这两个事件不同时发生外,还要求二者必须有一个发生因此对立事件一定是互斥事件,但互斥事件不一定是对立事件,对立事件是互斥事件的特殊情况(2)利用集合的观点来看,如果事件AB,则两事件是互斥的,此时AB的概率就可用加法公式来求,即为P(AB)P(A)P(B);如果事件AB,则可考虑利用古典概型的定义来解决,不能直接利用概率加法公式(3)利用集合的观点来看,如果事件AB,ABU,则两事件是对立的,此时AB就是必然事件,可由P(AB)P(A)P(B)1来求解P(A)或P(B)2互斥事件概率的求法(1)若A1,A2,An互斥,则P(A1A2An)P(A1)P(A2)P(An)(2)

6、利用这一公式求概率的步骤:要确定这些事件彼此互斥;这些事件中有一个发生;先求出这些事件分别发生的概率,再求和值得注意的是:、两点是公式的使用条件,不符合这两点,是不能运用互斥事件的概率加法公式的3对立事件概率的求法P()P(A)P(A)P()1,由公式可得P(A)1P()(这里是A的对立事件,为必然事件)4互斥事件的概率加法公式是解决概率问题的重要公式,它能把复杂的概率问题转化为较为简单的概率或转化为其对立事件的概率求解甲、乙两人参加普法知识竞赛,共有5个不同的题目其中,选择题3个,判断题2个,甲、乙两人各抽一题(1)甲、乙两人中有一个抽到选择题,另一个抽到判断题的概率是多少?(2)甲、乙两人

7、中至少有一人抽到选择题的概率是多少?【精彩点拨】用列举法把所有可能的情况列举出来,或考虑互斥及对立事件的概率公式【规范解答】把3个选择题记为x1,x2,x3,2个判断题记为p1,p2.总的事件数为20.“甲抽到选择题,乙抽到判断题”的情况有:(x1,p1),(x1,p2),(x2,p1),(x2,p2),(x3,p1),(x3,p2),共6种;“甲抽到判断题,乙抽到选择题”的情况有:(p1,x1),(p1,x2),(p1,x3),(p2,x1),(p2,x2),(p2,x3),共6种;“甲、乙都抽到选择题”的情况有:(x1,x2),(x1,x3),(x2,x1),(x2,x3),(x3,x1)

8、,(x3,x2),共6种;“甲、乙都抽到判断题”的情况有:(p1,p2),(p2,p1),共2种(1)“甲抽到选择题,乙抽到判断题”的概率为,“甲抽到判断题,乙抽到选择题”的概率为,故“甲、乙两人中有一个抽到选择题,另一个抽到判断题”的概率为.(2)“甲、乙两人都抽到判断题”的概率为,故“甲、乙两人至少有一人抽到选择题”的概率为1.再练一题2某服务电话,打进的电话响第1声时被接的概率是0.1;响第2声时被接的概率是0.2;响第3声时被接的概率是0.3;响第4声时被接的概率是0.35.(1)打进的电话在响5声之前被接的概率是多少?(2)打进的电话响4声而不被接的概率是多少?【解】(1)设事件“电

9、话响第k声时被接”为Ak(kN),那么事件Ak彼此互斥,设“打进的电话在响5声之前被接”为事件A,根据互斥事件概率加法公式,得P(A)P(A1A2A3A4)P(A1)P(A2)P(A3)P(A4)0.10.20.30.350.95.(2)事件“打进的电话响4声而不被接”是事件A“打进的电话在响5声之前被接”的对立事件,记为.根据对立事件的概率公式,得P()1P(A)10.950.05.古典概型与几何概型古典概型是一种最基本的概率模型,也是学习其他概率模型的基础,在高考题中,经常出现此种概率模型的题目解题时要紧紧抓住古典概型的两个基本特征,即有限性和等可能性在应用公式P(A)时,关键是正确理解基

10、本事件与事件A的关系,求出n,m.但列举时必须按某一顺序做到不重复、不遗漏几何概型同古典概型一样,是概率中最具有代表性的试验概型之一,在高考命题中占有非常重要的位置我们要理解并掌握几何概型试验的两个基本特征,即:每次试验中基本事件的无限性和每个事件发生的等可能性,由于其结果的无限性,概率就不能应用P(A)求解,而需转化为几何度量(如长度、面积、体积等)的比值求解,体现了数形结合的数学思想甲、乙两艘货轮都要在某个泊位停靠6小时,假定它们在一昼夜的时间段中随机到达,试求两船中有一艘在停泊位时,另一艘船必须等待的概率【精彩点拨】甲、乙两艘货轮停靠泊位的时间是6小时,当两船到达泊位的时间差不超过6小时

11、时,两船中一艘停靠,另一艘必须等待【规范解答】设甲、乙两船到达泊位的时刻分别为x、y.则作出如图所示的区域本题中,区域D的面积S1242,区域d的面积S2242182.P.即两船中有一艘在停泊位时另一船必须等待的概率为.再练一题3从1,2,3,4,5中随机选取一个数为a,从1,2,3中随机选取一个数为b,则ba的概率是() A.B.C. D.【解析】当b1时,没有满足条件的a值;当b2时,a1;当b3时,a可以是1,可以是2,共3种情况而从1,2,3,4,5中随机取一个数a,再从1,2,3中随机取一个数b,共有3515种不同取法,概率为.【答案】D概率与统计的综合问题统计和古典概型的综合是高考

12、解答题的一个命题趋势和热点,此类题很好地结合了统计与概率的相关知识,并且在实际生活中应用也十分广泛,能很好地考查学生的综合解题能力,在解决综合问题时,要求同学们对图表进行观察、分析、提炼,挖掘出图表所给予的有用信息,排除有关数据的干扰,进而抓住问题的实质,达到求解的目的随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图31所示图31(1)直接根据茎叶图判断哪个班的平均身高较高;(2)计算甲班的样本方差;(3)现从乙班这10名同学中随机抽取两名身高不低于173 cm的同学,求身高为176 cm的同学被抽中的概率【精彩点拨】(1)根据“叶”上的数据的集中情

13、况作出判断;(2)代入方差的计算公式求解;(3)列出基本事件和所求事件,用古典概型概率公式求解【规范解答】(1)由茎叶图可知:甲班身高集中于160 cm179 cm之间,而乙班身高集中于170 cm179 cm之间因此乙班平均身高高于甲班;(2)170(cm)甲班的样本方差s2(158170)2(162170)2(163170)2(168170)2(168170)2(170170)2(171170)2(179170)2(179170)2(182170)257.2(cm2)(3)设“身高为176 cm的同学被抽中”为事件A,从乙班10名同学中抽取两名身高不低于173 cm的同学有:(181,17

14、3),(181,176),(181,178),(181,179),(179,173),(179,176),(179,178),(178,173),(178,176),(176,173)共10个基本事件,而事件A含有4个基本事件:(181,176),(179,176),(178,176),(176,173),P(A).再练一题4某班同学利用国庆节进行社会实践,对25,55岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数的频率分布直方图:组数分组低碳族的人数占本组的频率第一组25,30)1200

15、.6第二组30,35)195p第三组35,40)1000.5第四组40,45)a0.4第五组45,50)300.3第六组50,55150.3图32(1)补全频率分布直方图并求n,a,p的值;(2)从年龄段在40,50)的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在40,45)岁的概率【解】(1)第二组的频率为1(0.040.040.030.020.01)50.3,所以高为0.06.频率分布直方图如下:第一组的人数为200,频率为0.0450.2,所以n1 000.由题可知,第二组的频率为0.3,所以第二组的人数为1 0000.3

16、300,所以p0.65.第四组的频率为0.0350.15,所以第四组的人数为1 0000.15150,所以a1500.460.(2)因为40,45)岁年龄段的“低碳族”与45,50)岁年龄段的“低碳族”的比值为603021,所以采用分层抽样法抽取6人,40,45)岁中有4人,45,50)岁中有2人设40,45)岁中的4人为a,b,c,d,45,50)岁中的2人为m,n,则选取2人作为领队的选法有(a,b),(a,c),(a,d),(a,m),(a,n),(b,c),(b,d),(b,m),(b,n),(c,d),(c,m),(c,n),(d,m),(d,n),(m,n),共15种;其中恰有1人

17、年龄在40,45)岁的有(a,m),(a,n),(b,m),(b,n),(c,m),(c,n),(d,m),(d,n),共8种所以选取的2名领队中恰有1人年龄在40,45)岁的概率为.数形结合思想数形结合思想在求古典概型和几何概型的概率中有着广泛的应用在古典概型中,基本事件的个数较多且不易列举时,借助于图形会比较直观计数在几何概型中,把基本事件转化到与长度、面积、体积有关的图形中,结合图形求长度、面积、体积的比设点(p,q)在|p|3,|q|3中按均匀分布出现,试求方程x22pxq210的两根都是实数的概率【精彩点拨】试验的全部结果构成的区域为正方形的面积,方程有两个实根构成的区域为圆的外部【

18、规范解答】基本事件总体的区域D的度量为正方形面积,即D的度量为S正方形6236,由方程x22pxq210的两根都是实数,得(2p)24(q21)0,p2q21.当点(p,q)落在如图所示的阴影部分时,方程的两根均为实数,由图可知,构成的区域d的度量为S正方形S圆36,原方程的两根都是实数的概率为P.再练一题5三个人玩传球游戏,每个人都等可能地传给另两人(不自传),若从A发球算起,经4次传球又回到A手中的概率是多少? 【解】记三人为A、B、C,则4次传球的所有可能可用树状图方式列出,如下图:每一个分支为一种传球方案,则基本事件的总数为16,而又回到A手中的事件个数为6个,根据古典概型概率公式得P

19、.1小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是()A.B.C. D.【解析】(M,1),(M,2),(M,3),(M,4),(M,5),(I,1),(I,2),(I,3),(I,4),(I,5),(N,1),(N,2),(N,3),(N,4),(N,5),事件总数有15种正确的开机密码只有1种,P.【答案】C2某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为()A.B. C.D.【解析】如图,若该

20、行人在时间段AB的某一时刻来到该路口,则该行人至少等待15秒才出现绿灯AB长度为401525,由几何概型的概率公式知,至少需要等待15秒才出现绿灯的概率为,故选B.【答案】B3为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A. B.C. D.【解析】从4种颜色的花中任选2种颜色的花种在一个花坛中,余下2种颜色的花种在另一个花坛的种数有:红黄白紫、红白黄紫、红紫白黄、黄白红紫、黄紫红白、白紫红黄,共6种,其中红色和紫色的花不在同一花坛的种数有:红黄白紫、红白黄紫、黄紫红白、白紫红黄,共4种,故所求概率为P

21、,故选C.【答案】C4某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A. B.C. D.【解析】如图,7:50至8:30之间的时间长度为40分钟,而小明等车时间不超过10分钟是指小明在7:50至8:00之间或8:20至8:30之间到达发车站,此两种情况下的时间长度之和为20分钟,由几何概型概率公式知所求概率为P.故选B.【答案】B5如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为()

22、A.B.C.D.【解析】从1,2,3,4,5中任取3个不同的数共有如下10个不同的结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),其中勾股数只有(3,4,5),所以概率为.故选C.【答案】C章末综合测评(三)概率(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1下列事件中,随机事件的个数为()在学校明年召开的田径运动会上,学生张涛获得100米短跑冠军;在体育课上,体育老师随机抽取一名学生去拿

23、体育器材,抽到李凯;从标有1,2,3,4的4张号签中任取一张,恰为1号签;在标准大气压下,水在4时结冰A1B2C3D4【解析】在明年运动会上,可能获冠军,也可能不获冠军李凯不一定被抽到任取一张不一定为1号签在标准大气压下水在4时不可能结冰,故是随机事件,是不可能事件【答案】C2下列说法正确的是()A甲、乙二人比赛,甲胜的概率为,则比赛5场,甲胜3场B某医院治疗一种疾病的治愈率为10%,前9个病人没有治愈,则第10个病人一定治愈C随机试验的频率与概率相等D天气预报中,预报明天降水概率为90%,是指降水的可能性是90%【解析】概率只是说明事件发生的可能性大小,其发生具有随机性故选D.【答案】D3给

24、甲、乙、丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率是()A.B.C. D.【解析】给三人打电话的不同顺序有6种可能,其中第一个给甲打电话的可能有2种,故所求概率为P.故选B.【答案】B4在区间2,1上随机取一个数x,则x0,1的概率为()A. B.C. D.【解析】由几何概型的概率计算公式可知x0,1的概率P.故选A.【答案】A51升水中有1只微生物,任取0.1升化验,则有微生物的概率为()A0.1B0.2C0.3D0.4【解析】本题考查的是体积型几何概型【答案】A6从1,2,9中任取两数,其中:恰有一个偶数和恰有一个奇数;至少有一个奇数和两个数都是奇数;至少有一个奇数和两

25、个数都是偶数;至少有一个奇数和至少有一个偶数在上述事件中,是对立事件的是()ABCD【解析】中两事件是同一事件;中两事件可能同时发生;中两事件互斥,并且一定有一个事件发生,因此是对立事件;中两事件可能同时发生故选C.【答案】C7某人从甲地去乙地共走了500 m,途中要过一条宽为x m的河流,他不小心把一件物品丢在途中,若物品掉在河里就找不到,若物品不掉在河里,则能找到,已知该物品能找到的概率为,则河宽为()A100 mB80 mC50 mD40 m【解析】设河宽为x m,则1,所以x100.【答案】A8从一批羽毛球中任取一个,如果其质量小于4.8 g的概率是0.3,质量不小于4.85 g的概率

26、是0.32,那么质量在4.8,4.85)范围内的概率是()A0.62B0.38 C0.70D0.68【解析】记“取到质量小于4.8 g”为事件A,“取到质量不小于4.85 g”为事件B,“取到质量在4.8,4.85)范围内”为事件C.易知事件A,B,C互斥,且ABC为必然事件所以P(ABC)P(A)P(B)P(C)0.30.32P(C)1,即P(C)10.30.320.38.【答案】B9如图1,矩形ABCD中,点E为边CD的中点,若在矩形ABCD内部随机取一个点Q,则点Q取自ABE内部的概率等于() 图1A. B.C. D.【解析】点E为边CD的中点,故所求的概率P.【答案】C10将区间0,1

27、内的均匀随机数x1转化为区间2,2内的均匀随机数x,需要实施的变换为()Axx1*2B.xx1*4C.xx1*2-2D.xx1*4-2【解析】由题意可知xx1*(2+2)-2=4x12【答案】D11先后抛掷两颗骰子,设出现的点数之和是12,11,10的概率依次是P1,P2,P3,则()AP1P2P3BP1P2P3CP1P2P3DP3P2P1【解析】先后抛掷两颗骰子的点数共有36个基本事件:(1,1),(1,2),(1,3),(6,6),并且每个基本事件都是等可能发生的而点数之和为12的只有1个:(6,6);点数之和为11的有2个:(5,6),(6,5);点数之和为10的有3个:(4,6),(5

28、,5),(6,4),故P1P2P3.【答案】B12在5件产品中,有3件一等品和2件二等品,从中任取2件,则下列选项中以为概率的事件是()A恰有1件一等品B至少有一件一等品C至多有一件一等品D都不是一等品【解析】将3件一等品编号为1,2,3,2件二等品编号为4,5,从中任取2件有10种取法:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)其中恰含有1件一等品的取法有:(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),恰有1件一等品的概率为P1,恰有2件一等品的取法有:(1,2),(1,3),(2,3)故恰

29、有2件一等品的概率为P2,其对立事件是“至多有一件一等品”,概率为P31P21.【答案】C二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13一个袋子中有5个红球,3个白球,4个绿球,8个黑球,如果随机地摸出一个球,记A摸出黑球,B摸出白球,C摸出绿球,D摸出红球,则P(A)_;P(B)_;P(CD)_.【解析】由古典概型的算法可得P(A),P(B),P(CD)P(C)P(D).【答案】14在区间(0,1)内任取一个数a,能使方程x22ax0有两个相异实根的概率为_【解析】方程有两个相异实根的条件是(2a)2414a220,解得|a|,又a(0,1),所以a1,区间的长

30、度为1,而区间(0,1)的长度为1,所以方程有两个相异实根的概率为.【答案】15甲、乙两组各有三名同学,他们在一次测验中的成绩的茎叶图如图2所示,如果分别从甲、乙两组中各随机选取一名同学,则这两名同学的成绩相同的概率是_. 图2【解析】由题意可知从甲、乙两组中各随机选取一名同学,共有9种选法,其中这两名同学的成绩相同的选法只有1种,故所求概率P.【答案】16甲乙两人玩猜数字游戏,先由甲心中任想一个数字记为a,再由乙猜甲刚才想的数字,把乙猜的数字记为b,且a,b0,1,2,9若|ab|1,则称甲乙“心有灵犀”现任意找两人玩这个游戏,则二人“心有灵犀”的概率为_【解析】此题可化为任意从09中取两数

31、(可重复)共有1010100种取法若|ab|1分两类,当甲取0或9时,乙只能猜0、1或8、9共4种,当甲取28中的任一数字时,分别有3种选择,共3824种,所以P.【答案】三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17(本小题满分10分)随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:日期12345678910天气晴雨阴阴阴雨阴晴晴晴日期11121314151617181920天气阴晴晴晴晴晴阴雨阴阴日期21222324252627282930天气晴阴晴晴晴阴晴晴晴雨(1)在4月份任取一天,估计西安市在该天不下雨的概率;(2)西安市某学校拟

32、从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率【解】(1)在容量为30的样本中,不下雨的天数是26,以频率估计概率,4月份任选一天,西安市不下雨的概率为.(2)称相邻的两个日期为“互邻日期对”(如,1日与2日,2日与3日等)这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率为.以频率估计概率,运动会期间不下雨的概率为.18(本小题满分12分)对某班一次测验成绩进行统计,如下表所示:分数段40,50)50,60)60,70)70,80)80,90)90,100概率0.020.040.170.360.250.15(1)

33、求该班成绩在80,100内的概率;(2)求该班成绩在60,100内的概率【解】记该班的测试成绩在60,70),70,80),80,90),90,100内依次为事件A,B,C,D,由题意知事件A,B,C,D是彼此互斥的(1)该班成绩在80,100内的概率是P(CD)P(C)P(D)0.250.150.4.(2)该班成绩在60,100内的概率是P(ABCD)P(A)P(B)P(C)P(D)0.170.360.250.150.93.19(本小题满分12分)小王、小李两位同学玩掷骰子(骰子质地均匀)游戏,规则:小王先掷一枚骰子,向上的点数记为x;小李后掷一枚骰子,向上的点数记为y.(1)在直角坐标系x

34、Oy中,以(x,y)为坐标的点共有几个?(2)规定:若xy10,则小王赢;若xy4,则小李赢,其他情况不分输赢试问这个游戏规则公平吗?请说明理由. 【解】(1)由于x,y取值为1,2,3,4,5,6,则以(x,y)为坐标的点有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),

35、(6,2),(6,3),(6,4),(6,5),(6,6),共有36个,即以(x,y)为坐标的点共有36个(2)满足xy10的点有:(4,6),(5,5),(5,6),(6,4),(6,5),(6,6),共6个,所以小王赢的概率是,满足xy4的点有:(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),共6个,所以小李赢的概率是,则小王赢的概率等于小李赢的概率,所以这个游戏规则公平20(本小题满分12分)某校夏令营有3名男同学A,B,C和3名女同学X,Y,Z,其年级情况如下表:一年级二年级三年级男同学ABC女同学XYZ现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能

36、性相同)(1)用表中字母列举出所有可能的结果;(2)设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M发生的概率【解】(1)从6名同学中随机选出2人参加知识竞赛的所有可能结果为A,B,A,C,A,X,A,Y,A,Z,B,C,B,X,B,Y,B,Z,C,X,C,Y,C,Z,X,Y,X,Z,Y,Z,共15种(2)选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能结果为A,Y,A,Z,B,X,B,Z,C,X,C,Y,共6种因此,事件M发生的概率P(M).21(本小题满分12分)一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同随机有放

37、回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.(1)求“抽取的卡片上的数字满足abc”的概率;(2)求“抽取的卡片上的数字a,b,c不完全相同”的概率【解】(1)由题意知,(a,b,c)所有的可能为(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3

38、),(3,3,1),(3,3,2),(3,3,3),共27种设“抽取的卡片上的数字满足abc”为事件A,则事件A包括(1,1,2),(1,2,3),(2,1,3),共3种所以P(A).因此,“抽取的卡片上的数字满足abc”的概率为.(2)设“抽取的卡片上的数字a,b,c不完全相同”为事件B,则事件包括(1,1,1),(2,2,2),(3,3,3),共3种所以P(B)1P()1.因此,“抽取的卡片上的数字a,b,c不完全相同”的概率为.22(本小题满分12分)把参加某次铅球投掷的同学的成绩(单位:米)进行整理,分成以下6个小组:5.25,6.15),6.15,7.05),7.05,7.95),7

39、.95,8.85),8.85,9.75),9.75,10.65,并绘制出频率分布直方图,如图3所示是这个频率分布直方图的一部分已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30,第6小组的频数是7.规定:投掷成绩不小于7.95米的为合格图3(1)求这次铅球投掷成绩合格的人数;(2)你认为这次铅球投掷的同学的成绩的中位数在第几组?请说明理由;(3)若参加这次铅球投掷的学生中,有5人的成绩为优秀,现在要从成绩优秀的学生中,随机选出2人参加相关部门组织的经验交流会,已知a、b 两位同学的成绩均为优秀,求a、b 两位同学中至少有1人被选到的概率【解】(1)第6小组的频率

40、为1(0.040.100.140.280.30)0.14.参加这次铅球投掷的总人数为50.根据规定,第4、5、6组的成绩均为合格,人数为(0.280.300.14)5036.(2)成绩在第1、2、3组的人数为(0.040.100.14)5014,成绩在第5、6组的人数为(0.300.14)5022,参加这次铅球投掷的总人数为50,这次铅球投掷的同学的成绩的中位数在7.95,8.85)内,即第4组(3)设这次铅球投掷成绩优秀的5人分别为a、b、c、d、e,则选出2人的所有可能的情况为:ab,ac,ad,ae,bc,bd,be,cd,ce,de,共10种,其中a、b至少有1人的情况为:ab,ac,ad,ae,bc,bd,be,共有7种,a、b 两位同学中至少有1人被选到的概率为P.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3