收藏 分享(赏)

《优选整合》人教A版高中数学选修1-1 3-4 生活中的优化问题举例 教案 .doc

上传人:高**** 文档编号:205354 上传时间:2024-05-26 格式:DOC 页数:6 大小:259KB
下载 相关 举报
《优选整合》人教A版高中数学选修1-1 3-4 生活中的优化问题举例 教案 .doc_第1页
第1页 / 共6页
《优选整合》人教A版高中数学选修1-1 3-4 生活中的优化问题举例 教案 .doc_第2页
第2页 / 共6页
《优选整合》人教A版高中数学选修1-1 3-4 生活中的优化问题举例 教案 .doc_第3页
第3页 / 共6页
《优选整合》人教A版高中数学选修1-1 3-4 生活中的优化问题举例 教案 .doc_第4页
第4页 / 共6页
《优选整合》人教A版高中数学选修1-1 3-4 生活中的优化问题举例 教案 .doc_第5页
第5页 / 共6页
《优选整合》人教A版高中数学选修1-1 3-4 生活中的优化问题举例 教案 .doc_第6页
第6页 / 共6页
亲,该文档总共6页,全部预览完了,如果喜欢就下载吧!
资源描述

1、生活中的优化问题举例一、教学目标1知识和技能目标(1)使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用;(2)提高将实际问题转化为数学问题的能力2过程和方法目标(1)培养学生主动发现问题、分析问题、解决问题的能力;3情感态度和价值观目标(1)进一步培养学生应用数学的意识。二、教学重点.难点教学重点:利用导数求函数最值的方法.用导数方法求函数最值的方法步骤教学难点:对最值的理解及与极值概念的区别与联系.求一些实际问题的最大值与最小值三、学情分析生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题通过前面的学习,我们知道,导数是求函数最大(小)值的有

2、力工具这一节,我们利用导数,解决一些生活中的优化问题四、教学方法师生互动探究式教学五、教学过程导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有以下几个方面:1、与几何有关的最值问题;2、与物理学有关的最值问题;3、与利润及其成本有关的最值问题;4、效率最值问题。解决优化问题的方法:首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域,通过创造在闭区间内求函数取值的情境,即核心问题是建立适当的函数关系。再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具利用导数解决优化问题的基本思路:建立数学模型解决数学模型

3、作答用函数表示的数学问题优化问题用导数解决数学问题优化问题的答案知识应用,深化理解例1海报版面尺寸的设计学校或班级举行活动,通常需要张贴海报进行宣传。现让你设计一张如图1.4-1所示的竖向张贴的海报,要求版心面积为128dm2,上、下两边各空2dm,左、右两边各空1dm。如何设计海报的尺寸,才能使四周空心面积最小?解:设版心的高为xdm,则版心的宽为dm,此时四周空白面积为。求导数,得。令,解得舍去)。于是宽为。当时,0.因此,是函数的极小值,也是最小值点。所以,当版心高为16dm,宽为8dm时,能使四周空白面积最小。答:当版心高为16dm,宽为8dm时,海报四周空白面积最小。例2饮料瓶大小对

4、饮料公司利润的影响(1)你是否注意过,市场上等量的小包装的物品一般比大包装的要贵些?(2)是不是饮料瓶越大,饮料公司的利润越大?【背景知识】:某制造商制造并出售球型瓶装的某种饮料瓶子的制造成本是 分,其中 是瓶子的半径,单位是厘米。已知每出售1 mL的饮料,制造商可获利 0.2 分,且制造商能制作的瓶子的最大半径为 6cm问题:(1)瓶子的半径多大时,能使每瓶饮料的利润最大?(2)瓶子的半径多大时,每瓶的利润最小?解:由于瓶子的半径为,所以每瓶饮料的利润是令 解得 (舍去)当时,;当时,当半径时,它表示单调递增,即半径越大,利润越高;当半径时, 它表示单调递减,即半径越大,利润越低(1)半径为

5、cm 时,利润最小,这时,表示此种瓶内饮料的利润还不够瓶子的成本,此时利润是负值来源:学科网(2)半径为cm时,利润最大换一个角度:如果我们不用导数工具,直接从函数的图像上观察,会有什么发现?有图像知:当时,即瓶子的半径为3cm时,饮料的利润与饮料瓶的成本恰好相等;当时,利润才为正值当时,为减函数,其实际意义为:瓶子的半径小于2cm时,瓶子的半径越大,利润越小,半径为cm 时,利润最小例3磁盘的最大存储量问题计算机把数据存储在磁盘上。磁盘是带有磁性介质的圆盘,并有操作系统将其格式化成磁道和扇区。磁道是指不同半径所构成的同心轨道,扇区是指被同心角分割所成的扇形区域。磁道上的定长弧段可作为基本存储

6、单元,根据其磁化与否可分别记录数据0或1,这个基本单元通常被称为比特(bit)。为了保障磁盘的分辨率,磁道之间的宽度必需大于,每比特所占用的磁道长度不得小于。为了数据检索便利,磁盘格式化时要求所有磁道要具有相同的比特数。问题:现有一张半径为的磁盘,它的存储区是半径介于与之间的环形区域来源:学科网(1)是不是越小,磁盘的存储量越大?(2)为多少时,磁盘具有最大存储量(最外面的磁道不存储任何信息)?解:由题意知:存储量=磁道数每磁道的比特数。设存储区的半径介于与R之间,由于磁道之间的宽度必需大于,且最外面的磁道不存储任何信息,故磁道数最多可达。由于每条磁道上的比特数相同,为获得最大存储量,最内一条

7、磁道必须装满,即每条磁道上的比特数可达。所以,磁盘总存储量(1)它是一个关于的二次函数,从函数解析式上可以判断,不是越小,磁盘的存储量越大(2)为求的最大值,计算令,解得当时,;当时,因此时,磁盘具有最大存储量。此时最大存储量为例4圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才能使所用的材料最省?解:设圆柱的高为h,底半径为R,则表面积S=2Rh+2R2 由V=R2h,得,则S(R)= 2R+ 2R2=+2R2令+4R=0解得,R=,从而h=2即h=2R因为S(R)只有一个极值,所以它是最小值答:当罐的高与底直径相等时,所用材料最省七、当堂检测1.某出版社出版一读物,一页上所印文

8、字占去150cm2,上、下要留1.5cm空白,左、右要留1cm空白,出版商为节约纸张,应选用怎样尺寸的页面?分析:设所印文字区域的左右长为x cm,确定纸张的长与宽,表示出面积,利用导数,确定函数的单调性,即可求得结论设所印文字区域的左右长为x cm,则上下长为 cm,所以纸张的左右长为(x+2)cm,上下长为()cm,所以纸张的面积S=(x+2)()=3x+ +156所以S=,令S=0解得x=10当x10时,S单调递增;当0x10时,S单调递减所以当x=10时,Smin=216(cm2),此时纸张的左右长为12 cm,上下长为18 cm故当纸张的边长分别为12 cm,18 cm时最节约2.一

9、书店预计一年内要销售某种书15万册,欲分几次订货,如果每次订货要付手续费30元,每千册书存放一年要耗库费40元,并假设该书均匀投放市场,问此书店分几次进货、每次进多少册,可使所付的手续费与库存费之和最少?【解】假设每次进书x千册,手续费与库存费之和为y元,由于该书均匀投放市场,则平均库存量为批量之半,即,故有y 3040,y20,令y0,得x 15,且y,f(15)0,所以当x 15时,y取得极小值,且极小值唯一,故 当x 15时,y取得最小值,此时进货次数为10(次)即该书店分10次进货,每次进15000册书,所付手续费与库存费之和最少设计意图:目的是让学生学会用数学的眼光去看待物理模型,建立各学科之间的联系,更深刻地把握事物变化的规律。六、课堂小结1.知识建构2.能力提高3.课堂体验七、课时练与测八、教学反思

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3