1、19.1.2 矩形的判定一、内容和内容解析(一)内容对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形(二)内容解析矩形的判定是平行四边形研究的重要内容,是对一般平行四边形研究的继承与发展,矩形的判定与矩形的性质是互逆命题,其研究方法与平行四边形的判定研究一脉相承,对后面的特殊平行四边形的判定研究起着示范和指导意义也是以后学习正方形和圆等知识的基础在矩形的基本性质中,我们知道了矩形的四个角是直角,矩形的对角线相等的性质,矩形又是一种特殊的平行四边形,由此,我们提出具备什么条件的平行四边形是矩形?由定义知,有一个角是直角的平行四边形是矩形,类比平行四边形判定的研究思路,提出矩形性质定理的
2、逆命题是否成立,再从矩形的定义出发,证明命题成立从而得到矩形的判定定理基于以上分析,可以确定本节课的教学重点是:定理“对角线相等的平行四边形是矩形”、“有三个角是直角的四边形是矩形”的探究与证明二、目标和目标解析(一)教学目标1会探究与证明“对角线相等的平行四边形是矩形”及“有三个角是直角的四边形是矩形”2能用上述判定定理解决简单问题(二)目标解析1达成目标1的标志是:能够从矩形性质定理的逆命题出发提出矩形的判定方法,能够从定义出发分析判定矩形的条件并进行证明2达成目标2的标志是:会用判定定理判定平行四边形是否是矩形及一般四边形是否是矩形三、教学问题诊断分析矩形的判定方法有多种,有的是从四边形
3、的基础上加条件进行强化,有的是从平行四边形的基础上加条件进行强化,应用时需要从具体已知条件出发,选择合适的判定方法,这对学生来说有一定的难度本节课的教学难点是:选择合适的判定方法证明四边形为矩形四、教学过程设计(一)情境引入,提出问题问题1 假如你是做窗框的师傅,你有什么方法检验你做的这个窗框成矩形?师生活动:学生回答先测两组对边是否分别相等,再量其中的一个角是否是直角,来检验窗框是否成矩形教师点评,并指出由定义可以判定一个平行四边形是否为矩形设计意图:通过实例引入矩形的判定方法通过定义可以验证,是否还有其他的验证方法呢?由此引入矩形的判定(二)类比思考,探究判定由矩形的定义我们很容易知道,有
4、一个角是直角的平行四边形是矩形定义是我们目前进行矩形判定唯一的方法那我们能不能像探究平行四边形判定的简便方法那样,来探究矩形判定的简便方法呢?因此,我们类比平行四边形判定的探究方法来探究矩形的判定问题2 学习平行四边形的判定时,我们是如何猜想并进行证明的吗?师生活动:学生回忆平行四边形的判定的探究过程,并回答教师提炼:设计意图:回顾四边形判定的探究方法,揭示本课的学习方法:类比学习方法为矩形判定的探究指明了方法问题3 同样,我们能否通过研究矩形性质的逆命题,得到判定矩形的方法呢? 追问:矩形性质的性质定理是什么?你能写出它的逆命题吗?师生活动:学生回顾矩形的性质,写出它们的逆命题,并交流讨论教
5、师板书两个逆命题,并画图1和图2逆命题1对角线相等的平行四边形是矩形;逆命题1有四个角是直角的四边形是矩形设计意图:由矩形性质的逆命题得出矩形判定猜想问题4 如何证明“对角线相等的平行四边形是矩形”呢?请结合图1写出已知、求证,并给出证明师生活动:学生交流讨论,写出已知、求证及证明,并展示教师做相应的指导设计意图:通过证明,说明逆命题1的正确性,得出判定定理追问:由“对角线相等的平行四边形是矩形”你能否检验你做的窗框成矩形?如何检验?师生活动:学生根据判定定理回答,有的学生可能只测量两对角线是否相等,却忽视了平行四边形的检测,之后教师指导设计意图:运用“对角线相等的平行四边形是矩形”解决问题,
6、强调应用该判定定理时所必需的两个条件:对角线相等,平行四边形问题5 有四个角是直角的四边形是矩形吗?请结合图2说明理由追问1:进一步,至少有几个角是直角的四边形是矩形?师生活动:学生分析交流,得出矩形的判定方法:有三个角是直角的四边形是矩形设计意图:由性质定理的逆命题入手,得出有四个角是直角的四边形是矩形,再通过简化条件,得到矩形的判定追问2:由“有三个角是直角的四边形是矩形”你能否检验你做的窗框成矩形?如何检验?师生活动:学生思考回答,教师点评,并指出此时不需要测边的长度设计意图:运用“有三个角是直角的四边形是矩形”解决实际问题问题6 你能归纳矩形的判定方法吗?师生活动:学生归纳矩形判定的三
7、种方法:(1)定义;(2)对角线相等的平行四边形是矩形;(3)有三个角是直角的四边形是矩形设计意图:让学生完整的掌握本节课的主要知识点,为判定的灵活运用作好铺垫(三)例题讲解,运用新知例1 如图3,在ABCD中,对角线AC,BD相交于点O,且OA=OD,OAD=50求OAB的度数师生活动:学生看图,结合题中所给的条件分析交流,解决问题,并展示教师适时指导设计意图:综合运用矩形的性质和判定解决问题(四)综合运用,巩固提高1八年级(3)班同学要在广场上布置一个矩形的花坛,计划用红花摆成两条对角线如果一条对角线用了38盆红花,还需要从花房运来多少盆红花?为什么?如果一条对角线用了49盆呢?2如图4,
8、ABCD的对角线AC,BD相交于点O,OAB是等边三角形,且求ABCD的面积师生活动:学生独立完成练习,并相互交流设计意图:学生经历应用知识的过程,进一步掌握知识,提高应用知识的能力(五)反思小结,反思提高师生一起回顾本节课所学的主要内容,并请学生回答以下问题:(1)本节课我们学习了哪几种矩形的判定方法?每种判定方法的条件是什么?(2)我们是怎样证明判定方法的?(3)你能说一说矩形的判定方法的探究思路吗?教师展示公理化体系的知识框图,并作简要说明:设计意图:引导学生归纳本节课的知识点和疏理探究思路,并对举行判定的判定体系作整体感知(六)布置作业 课后习题五、目标检测设计1下列说法正确的是( )
9、A有一组对角是直角的四边形一定是矩形B有一组邻角是直角的四边形一定是矩形C对角线互相平分的四边形是矩形D对角互补的平行四边形是矩形设计意图:考查矩形判定方法的运用2在四边形ABCD中,如果A=90,有下列说法:对角线AC,BD互相平分,那么四边形ABCD是矩形;B=C=90,那么四边形ABCD是矩形;对角线AC=BD,那么四边形ABCD是矩形其中正确的说法有 (把你认为正确说法的序号全部填上)设计意图:考查矩形判定方法的运用3已知:如图,在ABC中,C90,CD为中线,延长CD 到点E,使得 DE=CD连结AE,BE,则四边形ACBE为矩形设计意图:考查“有一个角是直角的平行四边形是矩形”或“对角线相等的平行四边形是矩形”及直角三角形性质的综合运用4如图,四边形ABCD是平行四边形,AC,BD相交于点O,12(1)求证:四边形ABCD是矩形;(2)若BOC120,AB4 cm,求四边形ABCD的面积设计意图:(1)考查“对角线相等的平行四边形是矩形”的运用(2)考查矩形的性质与勾股定理等的综合运用5