收藏 分享(赏)

冲刺60天2012年高考文科数学解题策略 专题二 三角函数与平面向量第一节 三角函数的化简、求值及证明.doc

上传人:高**** 文档编号:189123 上传时间:2024-05-26 格式:DOC 页数:9 大小:658.50KB
下载 相关 举报
冲刺60天2012年高考文科数学解题策略 专题二 三角函数与平面向量第一节 三角函数的化简、求值及证明.doc_第1页
第1页 / 共9页
冲刺60天2012年高考文科数学解题策略 专题二 三角函数与平面向量第一节 三角函数的化简、求值及证明.doc_第2页
第2页 / 共9页
冲刺60天2012年高考文科数学解题策略 专题二 三角函数与平面向量第一节 三角函数的化简、求值及证明.doc_第3页
第3页 / 共9页
冲刺60天2012年高考文科数学解题策略 专题二 三角函数与平面向量第一节 三角函数的化简、求值及证明.doc_第4页
第4页 / 共9页
冲刺60天2012年高考文科数学解题策略 专题二 三角函数与平面向量第一节 三角函数的化简、求值及证明.doc_第5页
第5页 / 共9页
冲刺60天2012年高考文科数学解题策略 专题二 三角函数与平面向量第一节 三角函数的化简、求值及证明.doc_第6页
第6页 / 共9页
冲刺60天2012年高考文科数学解题策略 专题二 三角函数与平面向量第一节 三角函数的化简、求值及证明.doc_第7页
第7页 / 共9页
冲刺60天2012年高考文科数学解题策略 专题二 三角函数与平面向量第一节 三角函数的化简、求值及证明.doc_第8页
第8页 / 共9页
冲刺60天2012年高考文科数学解题策略 专题二 三角函数与平面向量第一节 三角函数的化简、求值及证明.doc_第9页
第9页 / 共9页
亲,该文档总共9页,全部预览完了,如果喜欢就下载吧!
资源描述

1、高考资源网() 您身边的高考专家 三角函数的化简、求值及证明涉及恒等变换,而三角函数的恒等变换是历年高考命题的热点. 它既可以出现小题(选择或者填空),也可以与三角函数的性质,解三角形,向量等知识结合,参杂、渗透在解答题中,它们的难度值一般控制在0.5-0.8之间. 提高三角变换能力, 要学会设置条件, 灵活运用三角公式, 掌握运算、化简及证明的方法和技能. 考试要求 理解同角三角函数的基本关系式;(2)会推导两角和与差、二倍角的余弦、正弦、正切公式,了解它们的内在联系,能运用上述公式进行简单的恒等变换;(3)掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题;(4)能够运用正弦定理、余

2、弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.题型一 已知三角函数的值求角问题例1 ()在中,内角的对边分别是,若,则()BCD ()若,求+2= .点拨 本题()应先利用正弦定理进行角化边,然后利用余弦定理求角A. 题()首先应求+2的函数值,为了使角的范围好控制,这里选用正切值好一点,然后根据条件依次找出所需的条件,要注意角的范围. 解三角形的问题关键是灵活运用正弦定理和余弦定理,正确进行边化角、角化边,探寻解答. 题()最困难的地方在于确定+2的范围,一般地,根据已知条件,把角的范围限制得越精确,结果也越准确.解()由及正弦定理,得,代入,得,即,又,(为什么从角化边入手?)

3、由余弦定理,(选用余弦定理合理否?)所以故选(),(为什么要把角的范围定得这样精确?)+2,又tan2=,+2=.易错点 题()记错公式、忘记讨论角的范围或者代数运算不熟练是造成这类解三角形问题的出错的主要原因.这里选用余弦定理求角是正确的,如果选用正弦定理求角就不合理,一是出现2个角,二是要讨论舍弃1个角,更容易出错;题()中,角的范围容易忽略或放大,导致错误.变式与引申1:已知,为锐角,tan=,sin=,求2+的值.题型二 三角函数化简、求值问题例2(2011江西卷文科第17题)在中,角A,B,C的对边是a,b,c,已知(1)求的值(2)若a=1, ,求边c的值. (2)由 展开易得:

4、正弦定理: 易错点 本题涉及到正弦定理、诱导公式及三角形内角和为180这两个知识点的考查, 不知道利用将已知条件中的角化成同角,从而利用恒等变形得出.再由正弦定理求出 变式与引申2:(2011江西卷文理科科第17题)在ABC中,角的对边分别是,已知.(1) 求的值;(2) 若,求边的值.题型三 三角函数的取值范围问题例3已知函数. (1)若,求;(2)若,求的取值范围.点 拨 通过“切化弦”,“降次”等手段,再利用万能公式或“齐次式”可解决第(1)题;第(2)题则首先化为一个三角函数的形式,再根据角的范围来求的取值范围.解:(1),由得,所以.(2)由(1)得由得,所以从而.其它解法思路:题(

5、1)有以下解法:故易错点 记错二倍角或万能公式;不会在区间上,联系三角函数图像求函数的取值范围;或运用公式不合理,产生错误.例如用,去求,容易出现符号处理带来的麻烦等等.变式与引申3:已知向量,且,其中A、B、C是ABC的内角,分别是角A,B,C的对边(1)求角C的大小;(2)求的取值范围题型四 三角函数化简、求值的综合应用例4已知角是三角形的三内角,向量,,且.(1)求角; (2)求;(3)若边的长为,求的面积 点拨 本题难在第(2)题,若整理成关于角B的二次式或齐次式,运算则相对简单;第(3)题也要注意选择运算简单的思路.解(1), , 即.,., .(2)由题知,整理得,, .或.而使,

6、舍去. .(3)由(1)知, 得,又,故(舍去负值,为什么?),由正弦定理,.故三角形的面积.易错点:一是本题有点运算量,很容易由于选择的解法运算繁琐而算错;二是不会根据条件回避讨论.由角的范围或其它隐含条件去讨论甄别函数值至关重要,也很容易出错其它解法思路:化简时,也有很多的思路,如:由,得;由得等.变式与引申4:在例4题(3)中,若内角A,B,C的对边分别为a、b、c,且求边c的长.本节主要考查 三角函数的公式及其在化简、求值和证明中的运用; 恒等变换的能力和运算能力;三角形中的边、角、面积等关系(正余弦定理);(4)等价转化的数学思想方法等等.点评 高考试题中的三角函数题相对比较传统,难

7、度较低,位置靠前,重点突出.因此,在复习过程中既要注重三角知识的基础性,突出三角函数的图象、周期性、单调性、奇偶性、对称性等性质.以及化简、求值和最值等重点内容的复习,又要注重三角知识的工具性,突出三角与代数、几何、向量的综合联系,以及三角知识的应用意识.本节涉及的知识与技能主要有:(1)三角函数式的化简问题,在最后所得到的结果中,要求所含函数和角的名称或种类最少,三角函数名称尽可能统一,各项的次数尽可能地低,出现的项数最少,一般应使分母和根号不含三角函数式,对能求出具体数值的,要求出值.(2)三角函数的求值问题,是训练三角恒等变换的基本题型,求值的关键是熟练掌握公式及应用, 掌握公式的逆用和

8、变形.在化简和求值中,重视角的范围对三角函数值的影响,对角的范围尤其要注意讨论.(3)证明恒等式的过程就是分析、转化、消去等式两边差异来促成统一的过程,在进行三角函数的化简和三角恒等式的证明时,需要仔细观察题目的特征,灵活、恰当地选择公式.证明时常用的方法有:从一边开始,证明它等于另一边;证明左右两边同等于同一个式子;证明与原式等价的另一个式子成立,从而推出原式成立;分析法等.(4)近年的考纲明确提出要加强对正余弦定理的考查,且常结合三角形内的三角恒等变换进行考查解三角形这类题目的解答程序是:一是看方向(是从角化边入手还是边化角入手);二是用定理(合理且灵活运用正弦定理和余弦定理);三是定答案

9、(根据取值范围讨论并确定答案).还要特别注意三角形中三个角A、B、C,三条边a、b、c,中线ma,角平分线AD,外接圆半径R,内切圆半径r,三角形面积S之间的关系和三角形的形状.(5)三角函数的综合问题常常与向量,二次函数等有关,但着力点还是三角知识,尤其是利用二倍角公式、“切化弦”、同角三角函数的基本关系、两角和与差等进行恒等变形,是高考考查的重中之重.解答这类综合问题的原则是三点:降次化次数较高的三角式为次数较低的三角式;减元化多种三角函数为单一的三角函数;变角化多角的三角函数为单角的三角函数.还要特别注意:1的变化:角的变化:化切为弦、升幂公式、降幂公式的合理运用;在理解的基础上熟记和灵

10、活运用各种公式,包括正用公式、反用公式和变用公式. 习题211. 已知cos+sin=,sin+cos的取值范围是D,xD,则函数y=的最小值为( ).A. B. C. D.2. ABC的角A、B、C的对边分别为a、b、c,(2bc,a),(cosA,cosC),且则当y2sin2Bsin(2B)取最大值时,角的大小为 【答案】变式与引申1:由已知02+, 求得cos(2+)=或tan(2+)=1.得2+=.变式与引申2:解:(1)已知 整理即有:又C为中的角,(2) 又,变式与引申3:(1)由得,由余弦定理, 又,则. (2)由(1)得,则, , , , , , 即得取值范围是.变式与引申4

11、:由余弦定理, 故消去c,再把由题()中得出的,和已知代入,得c=1.习题211.答案:B.解:设u=sin+cos,则u2+()2=(sin+cos)2+(cos+sin)2=2+2sin(+)4.u21,1u1.即D=1,1,设t=,1x1,1t.x=.2. 答案: B.解:由,得0,从而(2bc)cosAacosC0,由正弦定理得2sinBcosAsinCcosAsinAcosC0,2sinBcosAsin(AC)0,2sinBcosAsinB0,A、B(0,),sinB0,cosA,故A.y2sin2Bsin(2B)(1cos2B)sin2Bcoscos2Bsin1sin2B cos2B1sin(2B).由A得0B,2B,当2B,即B时,y取最大值2.代入得=.4(1), ; (2)(tan=时取等号).故的最大值是- 9 - 版权所有高考资源网

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3