收藏 分享(赏)

人教七下数学第六章实数小结与复习教案.docx

上传人:高**** 文档编号:1840061 上传时间:2024-06-12 格式:DOCX 页数:5 大小:629.15KB
下载 相关 举报
人教七下数学第六章实数小结与复习教案.docx_第1页
第1页 / 共5页
人教七下数学第六章实数小结与复习教案.docx_第2页
第2页 / 共5页
人教七下数学第六章实数小结与复习教案.docx_第3页
第3页 / 共5页
人教七下数学第六章实数小结与复习教案.docx_第4页
第4页 / 共5页
人教七下数学第六章实数小结与复习教案.docx_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第六章复习教案教学目标来源:Z_xx_k.Com情感态度来源:学,科,网体会特殊到一般、化零为整的认识过程,运用类比思想,强化符号意识,进一步培养估算和运算能力。来源:学.科.网Z.X.X.K知识与技能理解算术平方根、平方根、立方根概念;掌握算术平方根和平方根的区别于联系;了解平方根、立方根的计算器求法;巩固实数的运算。过程与方法从局部到整体,一点一练,分层过关。教学重难点重点算术平方根、平方根、立方根、无理数概念及性质;理解实数的有关概念及实数的运算。难点灵活运用算术平方根的双重非负性解题教法与学法以提代纲,练习后总结反思。教学准备投影仪知识梳理一数的开方主要知识点:【1】平方根:1.如果一

2、个数x的平方等于a,那么,这个数x就叫做a的平方根;也即,当时,我们称x是a的平方根,记做:。因此:2.当a=0时,它的平方根只有一个,也就是0本身;3.当a0时,也就是a为正数时,它有两个平方根,且它们是互为相反数,通常记做:。当a0时,也即a为负数时,它不存在平方根。例1.(1) 的平方是64,所以64的平方根是 ;(2) 的平方根是它本身。(3)若的平方根是2,则x= ;的平方根是 (4)一个正数的平方根分别是m和m-4,则m的值是多少?这个正数是多少?【2】算术平方根:1.如果一个正数x的平方等于a,即,那么,这个正数x就叫做a的算术平方根,记为:“”,读作,“根号a”,其中,a称为被

3、开方数。特别规定:0的算术平方根仍然为0。2.算术平方根的性质:具有双重非负性,即:。3.算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。因此,算术平方根只有一个值,并且是非负数,它只表示为:;而平方根具有两个互为相反数的值,表示为:。例2.(1)下列说法正确的是 ( )A1的平方根是1 B C.的平方根是 D.0没有平方根; (2)下列各式正确的是( )A. B. C. D.(3)的算术平方根是 。(4)已知和2互为相反数,求,y的值(5)(提高题)如果x、y分别是4的整数部分和小数部分。求xy的值.【3】立方根1.如果x的立方等于a,那么,就称x是

4、a的立方根,或者三次方根。记做:,读作,3次根号a。注意:这里的3表示的是开方的次数。一般的,平方根可以省写根的次数,但是,当根的次数在两次以上的时候,则不能省略。2.平方根与立方根:每个数都有立方根,并且一个数只有一个立方根;但是,并不是每个数都有平方根,只有非负数才能有平方根。例3.(1)64的立方根是(2)若,则b等于( ) A. 1000000 B. 1000 C. 10 D. 10000(3)下列说法中:都是27的立方根,的立方根是2,。其中正确的有 ( )A、1个 B、2个 C、3个 D、4个【4】无理数 1.无限不循环小数的小数叫做无理数;它必须满足“无限”以及“不循环”这两个条

5、件。在初中阶段,无理数的表现形式主要包含下列几种:(1)特殊意义的数,如:圆周率以及含有的一些数,如:2-,3等;(2)开方开不尽的数,如:等;(3)特殊结构的数:如:2.010 010 001 000 01(两个1之间依次多1个0)等。应当要注意的是:带根号的数不一定是无理数,如:等;无理数也不一定带根号,如:2. 有理数与无理数的区别:(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。例4.(1)下列各数:3.141、0.33333、0.3030003000003(相邻两个

6、3之间0的个数逐次增加2)、其中是有理数的有;是无理数的有。(填序号)(2)有五个数:0.125125,0.1010010001,-,其中无理数有 ( )个A 2 B 3 C 4 D 5 【5】实数1.有理数与无理数统称为实数。在实数中,没有最大的实数,也没有最小的实数;绝对值最小的实数是0,最大的负整数是-1。2.实数的性质:实数a的相反数是-a;实数a的倒数是(a0);实数a的绝对值|a|=,它的几何意义是:在数轴上的点到原点的距离。3.实数的大小比较法则:实数的大小比较的法则跟有理数的大小比较法则相同:即正数大于0,0大于负数;正数大于负数;两个正数,绝对值大的就大,两个负数,绝对值大的

7、反而小。(在数轴上,右边的数总是大于左边的数)。对于一些带根号的无理数,我们可以通过比较它们的平方或者立方的大小。4.实数的运算:在实数范围内,可以进行加、减、乘、除、乘方、开方六种运算。运算法则和运算顺序与有理数的一致。例5.1.下列说法正确的是( );A、任何有理数均可用分数形式表示 ; B、数轴上的点与有理数一一对应 ;C、1和2之间的无理数只有 ; D、不带根号的数都是有理数。2.a,b在数轴上的位置如图所示,则下列各式有意义的是( )b0aA、 B、 C、 D、3.将下列各数:,用“”连接起来;_。4.(提高题)观察下列等式:回答问题: ,(1)根据上面三个等式的信息,请猜想的结果;(2)请按照上式反应的规律,试写出用n表示的等式,并加以验证。本章的知识网络结构:教学反思:

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3