1、平均数教学目标:(一)知识与技能:掌握算术平均数、加权平均数的概念,会求一组数的算术平均数和加权平均数。(二)过程与方法:经历数据的收集与处理的过程,发展学生初步的统计意识和数据处理的能力;通过有关平均数问题的解决,发展学生的数学应用能力。(三)情感态度与价值观:通过小组合作活动,培养学生的合作意识;通过解决实际问题,让学生体会数学与生活的密切联系。教学重点:教学难点:教学方法:教具准备:教学过程:第一环节:情境引入 1. 展示课本第八章的章前文字、章前图和一组问题,引入本章主题。2. 用篮球比赛引入本节课题:篮球运动是大家喜欢的一种运动项目,尤其是男生们更是倍爱有加。(1)影响比赛的成绩有哪
2、些因素?(心理、技术、配合、身高、年龄等) (2)如何衡量两个球队队员的身高?怎样理解“甲队队员的身高比乙队更高”? 要比较两个球队队员的身高,需要收集哪些数据呢?(收集两个球队队员的身高,并用两个球队队员身高的平均数作出判断)在学生的议论交流中引入本节课题:“平均数”。第二环节:合作探究内容1: 算术平均数教材提供的中国男子篮球职业联赛 20112012 赛季冠亚军球队队员身高、年龄的表格,提出问题: “北京金隅队”和“广东东莞银行队”两支篮球队中,哪支球队队员的身材更为高大?哪支球队队员更为年轻?你是怎样判断的?与同伴交流。 (1)学生先独立思考,计算出平均数,然后在小组交流。(2)各小组
3、之间竞争回答,答对的打上星,给予鼓励。答案:北京金隅队队员的平均身高为1.98m,平均年龄为25.4 岁; 广东东莞银行队队员的平均身高为2.00 m,平均年龄为24.1岁。所以,广东东莞银行队队员的身材更为高大,更为年轻。小结:日常生活中我们常用平均数来表示一组数据的“平均水平”。一般地,对于n个数x1,x2,xn,我们把(x1x2xn),叫做这n个数的算术平均数,简称平均数,记为。内容2: 加权平均数想一想:小明是这样计算北京金隅队队员的平均年龄的:年龄/岁1922232627282935相应队员数14221221平均年龄(191+224+232+262+271+282+292+351)(
4、1+4+2+2+1+2+2+1)25.4(岁)你能说说小明这样做的道理吗?学生经过讨论后可知,小明的做法还是根据算术平均数的公式进行计算的,只是在求相同加数的和时用了乘法,因此这是一种求算术平均数的简便方法。例1:某广告公司欲招聘广告策划人员一名,对A、B、C三名候选人进行了三项素质测试。他们的各项测试成绩如下表所示:测试项目测试成绩ABC创 新728567综合知识507470语 言884567(1)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用?(2)根据实际需要,公司将创新、综合知识和语言三项测试得分按4:3:1的比例确定各人的测试成绩,此时谁将被录用?引导学生思考讨论:第(1)(
5、2)问中录用的人不一样说明了什么?从而认识由于测试的每一项的重要性不同,所以所占的比份也不同,计算出的平均数就不同,因此重要性的差异对结果的影响是很大的。在学生认识的基础上,结合例1给出加权平均数的概念:实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而,在计算这组数据的平均数时,往往给每个数据一个“权”。如例1中4,3,1分别是创新、综合知识、语言三项测试成绩的权,而称 为A的三项测试成绩的加权平均数。第三环节:运用提高内容:1. 某次体操比赛,六位评委对选手的打分(单位:分)如下:9.5 ,9.3 ,9.1 ,9.5 ,9.4 ,9.3.(1)求这六个分数的平均分。(2)如果规定
6、:去掉一个最高分和一个最低分,余下分数的平均值作为选手的最后得分,那么该选手的最后得分是多少?2. 某校在期末考核学生的体育成绩时,将早锻炼及体育课外活动表现占成绩的20%,体育理论测试占30%,体育技能测试占50%。小颖的上述成绩分别为92分、80分、84分,则小颖这学期的体育成绩是多少?3. 从一批机器零件毛坯中取出20件,称得它们的质量如下:(单位:千克)2001 2007 2002 2006 2005 2006 2001 2009 2008 2010 (1)试求这批零件质量的平均数。(2)你能用新的简便方法计算它们的平均数吗?第四环节:课堂小结内容:引导学生用“我知道了”,“我发现了”,“我学会了”,“我想我以后将”的语言小结算术平均数和加权平均数的概念及运用。第五环节:布置作业 板书设计: 课后反思:3