1、高考资源网( ),您身边的高考专家3.1.1两角差的余弦公式一、教材分析两角差的余弦公式是人教A版高中数学必修4第三章三角恒等变换第一节两角和与差的正弦、余弦和正切公式第一节课的内容。本节主要给出了两角差的余弦公式的推导,要引导学生主动参与,独立思索,自己得出相应的结论。二、教学目标1.引导学生建立两角差的余弦公式。通过公式的简单应用,使学生初步理解公式的结构及其功能,并为建立其他和差公式打好基础。2.通过课题背景的设计,增强学生的应用意识,激发学生的学习积极性。3.在探究公式的过程中,逐步培养学生学会分析问题、解决问题的能力,培养学生学会合作交流的能力。三、教学重点难点重点 两角差余弦公式的
2、探索和简单应用。难点 探索过程的组织和引导。四、学情分析之前学习了三角函数的性质,以及平面向量的运算和应用,在此基础上,要考虑如何利用任意角的正弦余弦值来表示,牢固的掌握这个公式,并会灵活运用公式进行下一节内容的学习。五、教学方法1.自主性学习法:通过自学掌握两角差的余弦公式.2.探究式学习法:通过分析、探索、掌握两角差的余弦公式的过程.3.反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距六、课前准备1.学生准备:预习两角差的余弦公式,理解两种方法的推理过程。2.教师准备:课前预习学案,课内探究学案,课后延伸拓展学案。七、课时安排:1课时八、教学过程(一)创设情景,揭示课
3、题 以学校教学楼为背景素材(见课件)引入问题。并针对问题中的用计算器或不用计算器计算求值,以激趣激疑,导入课题。 教师问:想一想: 学校因某次活动的需要,需从楼顶的C点处往该点正对的地面上的A点处拉一条钢绳,为了在购买钢绳时不至于浪费,你能算一算到底需要多长钢绳吗? (要求在地面上测量,测量工具:皮尺,测角器)问题:(1)能不能不用计算器求值 : , ,(2)设计意图:由给出的背景素材,使学生感受数学源于生活,又应用于生活,唤起学生解决问题的兴趣,和抛出新知识引起学生的疑惑,在兴趣和疑惑中,激发学生的求知欲,引导学习方向。(二)、研探新知1.三角函数线法:问:怎样作出角、的终边。怎样作出角的余
4、弦线OM怎样利用几何直观寻找OM的表示式。设计意图:尽量用动画课件把探索过程展示出来,使学生能从几何直观角度加强对公式结构形式的认识。(1) 设角终边与单位圆地交点为P1,。(2) 过点P作PMX轴于点M,那么OM就是 的余弦线。(3) 过点P作PAOP1于A,过点A作ABx轴于B,过点P作PCAB于C那么 OA表示 ,AP 表示,并且于是 OM=OB+BM =OB+CP =OA+AP = 最后要提醒学生注意,公式推导的前提条件:、都是锐角,且2.向量法:问:结合图形,明确应选哪几个向量,它们怎么表示? 怎样利用向量数量积的概念和计算公式得到结果。 对探索的过程进一步严谨性的思考和处理,从而得
5、到合理的科学结论。设计意图:让学生经历利用向量知识解决一个数学问题的过程,体会向量方法解决数学问题的简洁性。如图,建立单位圆O由向量数量积的概念,有AOBxy 由向量数量积的坐标表示,有因为 、都是任 意 角,所以也是任意角,但由诱导公式以总可找到一个,使得 。 于是对于任意角、都有 例1. 利用差角余弦公式求的值 (求解过程让学生独立完成,注意引导学生多方向、多维度思考问题)解法1:解法2:变式训练:利用两角差的余弦公式证明下列诱导公式:(1); (2) (让学生联系公式和本题的条件,考虑清楚要计算,应作那些准备。) 解:由,得又由,是第三象限角,得所以让学生结合公式,明确需要再求哪些三角函
6、数值,可使问题得到解决。变式训练:(三)、质疑答辩,排难解惑,发展思维 1.利用两角和(差)的余弦公式,求【点评】:把一个具体角构造成两个角的和、差形式,有很多种构造方法,例如:,要学会灵活运用.2.求值 3化简 提示:利用拆角思想的变换技巧(设计意图:通过变式训练,进一步加深学生对公式的理解和应用,体验公式既可正用、逆用,还可变用.还可使学生掌握“变角”和“拆角”的思想方法解决问题,培养了学生的灵活思维品质,提高学生的数学交流能力,促进思维的创新。) (四)发导学案、布置预习本节我们学习了两角和与差的余弦公式,要求同学们掌握公式的推导,能熟练运用公式,注意公式的逆用。在解题过程中注意角、的象
7、限,也就是符号问题,学会灵活运用.课下完成本节的课后练习以及课后延展作业,课本习题2.3.4(设计意图:布置下节课的预习作业,并对本节课巩固提高。教师课后及时批阅本节的延伸拓展训练。)九、板书设计两角差的余弦公式1.三角函数线法 2.向量法例1 变式训练 例2 变式训练当堂训练1. 2.3. 4.十、教学反思本节主要考察如何用任意角的正弦余弦值来表示,回顾公式 的推导过程,观察公式的特征,注意符号区别以及公式中角,的任意性,特别要注意公式既可正用、逆用,还可变用(即要活用).还要注意掌握“变角”和“拆角”的思想方法解决问题.设计意图:让学生通过自己小结,反思学习过程,加深对公式及其推导过程(包括发现、猜想、论证的数学化的过程)的理解。 欢迎广大教师踊跃来稿,稿酬丰厚。