收藏 分享(赏)

《优化方案》2016高考数学(文)(新课标)一轮复习知能训练:第三章 三角函数、解三角形 第8讲 正弦定理和余弦定理的应用举例.doc

上传人:高**** 文档编号:179256 上传时间:2024-05-25 格式:DOC 页数:4 大小:247KB
下载 相关 举报
《优化方案》2016高考数学(文)(新课标)一轮复习知能训练:第三章 三角函数、解三角形 第8讲 正弦定理和余弦定理的应用举例.doc_第1页
第1页 / 共4页
《优化方案》2016高考数学(文)(新课标)一轮复习知能训练:第三章 三角函数、解三角形 第8讲 正弦定理和余弦定理的应用举例.doc_第2页
第2页 / 共4页
《优化方案》2016高考数学(文)(新课标)一轮复习知能训练:第三章 三角函数、解三角形 第8讲 正弦定理和余弦定理的应用举例.doc_第3页
第3页 / 共4页
《优化方案》2016高考数学(文)(新课标)一轮复习知能训练:第三章 三角函数、解三角形 第8讲 正弦定理和余弦定理的应用举例.doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、1. 两座灯塔A和B与海岸观察站C的距离相等,灯塔A在观察站南偏西40,灯塔B在观察站南偏东60,则灯塔A在灯塔B的()A北偏东10 B北偏西10C南偏东80 D南偏西80解析:选D.由条件及题图可知,AB40,又BCD60,所以CBD30,所以DBA10,因此灯塔A在灯塔B南偏西80.2(2015河南郑州模拟)已知A、B两地间的距离为10 km,B、C两地间的距离为20 km,现测得ABC120,则A,C两地间的距离为()A10 km B10 kmC10 km D10 km解析:选D.如图所示,由余弦定理可得:AC210040021020cos 120700,AC10(km)3如图,两座相距

2、60 m的建筑物AB,CD的高度分别为20 m、50 m,BD为水平面,则从建筑物AB的顶端A看建筑物CD的张角为()A30 B45C60 D75解析:选B.依题意可得AD20(m),AC30(m),又CD50(m),所以在ACD中,由余弦定理得cosCAD,又0CAD180,所以CAD45,所以从顶端A看建筑物CD的张角为45.4如图,一条河的两岸平行,河的宽度d0.6 km,一艘客船从码头A出发匀速驶往河对岸的码头B.已知AB1 km,水的流速为2 km/h,若客船从码头A驶到码头B所用的最短时间为6 min,则客船在静水中的速度为()A8 km/h B6 km/hC2 km/h D10

3、km/h解析:选B.设AB与河岸线所成的角为,客船在静水中的速度为v km/h,由题意知,sin ,从而cos ,所以由余弦定理得12221,解得v6.5(2014高考四川卷)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75,30,此时气球的高是60 m,则河流的宽度BC等于()A240(1)m B180(1)mC120(1)m D30(1)m解析:选C.如图,在ACD中,CAD903060,AD60 m,所以CDADtan 6060(m)在ABD中,BAD907515,所以BDADtan 1560(2)(m)所以BCCDBD6060(2)120(1)(m)6一船自西向东航行,上午

4、10时到达灯塔P的南偏西75,距塔68海里的M处,下午2时到达这座灯塔的东南方向的N处,则这只船航行的速度为_海里/小时解析:由题意知,在PMN中,PM68海里,MPN7545120,MNP45.由正弦定理,得,解得MN34海里,故这只船航行的速度为海里/小时海里/小时答案:7如图,为了测量河的宽度,在一岸边选定两点A、B望对岸的标记物C,测得CAB30,CBA75,AB120 m,则这条河的宽度为_解析:如图,在ABC中,过C作CDAB于D点,则CD为所求河的宽度在ABC中,CAB30,CBA75,ACB75,ACAB120 m.在RtACD中,CDACsinCAD120sin 3060(m

5、),因此这条河的宽度为60 m.答案:60 m8一船以每小时15 km的速度向东航行,船在A处看到一个灯塔M在北偏东60方向,行驶4 h后,船到达B处,看到这个灯塔在北偏东15方向,这时船与灯塔的距离为_km.解析:如图所示,依题意有AB15460,DAC60,CBM15,MAB30,AMB45.在AMB中,由正弦定理,得,解得BM30.答案:309(2015郑州市质量预测)郑州市某广场有一块不规则的绿地如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李、小王设计的底座形状分别为ABC、ABD,经测量ADBD7米,BC5米,AC8米,CD.求AB的长度解:在ABC中,由余弦定理得

6、cos C.在ABD中,由余弦定理得cos D.由CD得cos Ccos D,解得AB7,所以AB的长度为7米10某渔轮在航行中不幸遇险,发出呼救信号,我海军舰艇在A处获悉后,立即测出该渔轮在方位角为45,距离为10 n mile的C处,并测得渔轮正沿方位角为105的方向,以9 n mile/h的速度向某小岛靠拢,我海军舰艇立即以21 n mile/h的速度前去营救,求舰艇的航向和靠近渔轮所需的时间(精确到0.1 )解:如图所示,根据题意可知AC10,ACB120,设舰艇靠近渔轮所需的时间为t h,并在B处与渔轮相遇,则AB21t,BC9t,在ABC中,根据余弦定理得AB2AC2BC22ACBCcos 120,所以212t210281t22109t,即360t290t1000,解得t或t(舍去)所以舰艇靠近渔轮所需的时间为 h.此时AB14,BC6.在ABC中,根据正弦定理,得,所以sin CAB,即CAB21.8或CAB158.2 (舍去),即舰艇航行的方位角为4521.866.8.所以舰艇以66.8的方位角航行,需 h才能靠近渔轮

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3