1、4.1.2圆的一般方程【教学目标】使学生掌握圆的一般方程的特点;能将圆的一般方程化为圆的标准方程从而求出圆心的坐标和半径;能用待定系数法,由已知条件导出圆的方程使学生掌握通过配方求圆心和半径的方法,熟练地用待定系数法由已知条件导出圆的方法,熟练地用待定系数法由已知条件导出圆的方程,培养学生用配方法和待定系数法解决实际问题的能力通过对待定系数法的学习为进一步学习数学和其他相关学科的基础知识和基本方法打下牢固的基础【教学重难点】教学重点:(1)能用配方法,由圆的一般方程求出圆心坐标和半径;(2)能用待定系数法,由已知条件导出圆的方程教学难点:圆的一般方程的特点【教学过程】(一)情景导入、展示目标前
2、面,我们已讨论了圆的标准方程 (x-a)+(y-b)=r,现将展开可得x+y-2ax-2by+a+b-r=0可见,任何一个圆的方程都可以写成x+y+Dx+Ey+F=0请大家思考一下:形如x+y+Dx+Ey+F=0的方程的曲线是不是圆?下面我们来深入研究这一方面的问题复习引出课题为“圆的一般方程”(二)检查预习、交流展示1.写出圆的标准方程.2.写出圆的标准方程中的圆心与半径.(三)合作探究、精讲精练 探究一:圆的一般方程的定义1分析方程x+y+Dx+Ey+F=0表示的轨迹将方程x+y+Dx+Ey+F=0左边配方得: (1)(1)当D+E-4F0时,方程(1)与标准方程比较,可以看出方程半径的圆
3、;(3)当D+E-4F0时,方程x+y+Dx+Ey+F=0没有实数解,因而它不表示任何图形这时,教师引导学生小结方程x+y+Dx+Ey+F=0的轨迹分别是圆、法2引出圆的一般方程的定义当D+E-4F0时,方程x+y+Dx+Ey+F=0称为圆的一般方程探究二:圆的一般方程的特点请同学们分析下列问题:问题:比较二元二次方程的一般形式Ax+Bxy+Cy+Dx+Ey+F=0(2)与圆的一般方程x+y+Dx+Ey+F=0,(D+E-4F0)(3)的系数可得出什么结论?启发学生归纳结论当二元二次方程 Ax+Bxy+Cy+Dx+Ey+F=0具有条件:(1)x和y的系数相同,不等于零,即A=C0;(2)没有x
4、y项,即B=0;高考学习网XK(3)D+E-4AF0它才表示圆条件(3)通过将方程同除以A或C配方不难得出强调指出:(1)条件(1)、(2)是二元二次方程(2)表示圆的必要条件,但不是充分条件;(2)条件(1)、(2)和(3)合起来是二元二次方程(2)表示圆的充要条件例1 求下列圆的半径和圆心坐标:(1)x+y-8x+6y=0,(2)x+y+2by=0解析:先配方,将方程化为标准形式,再求圆心和半径解:(1)圆心为(4,-3),半径为5;(2)圆心为(0,-b),半径为|b|,注意半径不为b点拨:由圆的一般方程求圆心坐标和半径,一般用配方法,这要熟练掌握变式训练:方程x2y22kx4y3k8=
5、0表示圆的充要条件是( )k4或者k1 1k4 k=4或者k=1 以上答案都不对圆x2y2DxEyF=0与x轴切于原点,则有( )F=0,DE0 E2F2=0,D0 D2F2=0,E0 D2E2=0,F0答案:例2 求过三点O(0,0)、A(1,1)、B(4,2)的圆的方程解析:已知圆上的三点坐标,可设圆的一般方程,用待定系数法求圆的方程解:设所求圆的方程为x+y+Dx+Ey+F=0,由O、A、B在圆上,则有解得:D=-8,E=6,F=0,故所求圆的方程为x+y-8x+6=0点拨:1用待定系数法求圆的方程的步骤:(1)根据题意设所求圆的方程为标准式或一般式;(2)根据条件列出关于a、b、r或D
6、、E、F的方程;(3)解方程组,求出a、b、r或D、E、F的值,代入所设方程,就得要求的方程2关于何时设圆的标准方程,何时设圆的一般方程:一般说来,如果由已知条件容易求圆心的坐标、半径或需要用圆心的坐标、半径列方程的问题,往往设圆的标准方程;如果已知条件和圆心坐标或半径都无直接关系,往往设圆的一般方程 变式训练: 求圆心在直线 l:x+y=0上,且过两圆Cx+y-2x+10y-24=0和Cx+y+2x+2y-8=0的交点的圆的方程解:解方程组,得两圆交点为(,),(,)设所求圆的方程为(x-a)+(y-b)=r,因为两点在所求圆上,且圆心在直线l上所以得方程组为解得,故所求圆的方程为:(x+3)+(y-3)=10 (四)反馈测试导学案当堂检测 (五)总结反思、共同提高1圆的一般方程的定义及特点;2用配方法求出圆的圆心坐标和半径;3用待定系数法,导出圆的方程【板书设计】一:圆的一般方程的定义1分析方程x+y+Dx+Ey+F=0表示的轨迹2圆的一般方程的定义二:圆的一般方程的特点(1)(2)(3)例1变式训练:例2变式训练:【作业布置】导学案课后练习与提高