1、高考资源网( ),您身边的高考专家 一、预习目标通过阅读教材初步了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量.二、预习内容(一)、情景设置:ABCD如图,老鼠由A向西北逃窜,猫在B处向东追去,设问:猫能否追到老鼠?(画图)结论:猫的速度再快也没用,因为方向错了.分析:老鼠逃窜的路线AC、猫追逐的路线BD实际上都是有方向、有长短的量.引言:请同学指出哪些量既有大小又有方向?哪些量只有大小没有方向?(二)、新课预习: 1、向量的概念:我们把既有大小又有方向的量叫向量2、请同学阅读课本
2、后回答:(可制作成幻灯片)1) 数量与向量有何区别?2) 如何表示向量?3) 有向线段和线段有何区别和联系?分别可以表示向量的什么?4) 长度为零的向量叫什么向量?长度为1的向量叫什么向量?5) 满足什么条件的两个向量是相等向量?单位向量是相等向量吗?6) 有一组向量,它们的方向相同或相反,这组向量有什么关系?7) 如果把一组平行向量的起点全部移到一点O,这是它们是不是平行向量?这时各向量的终点之间有什么关系?三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容课内探究学案一、学习目标1、通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.2
3、、通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力.二、学习过程1、数量与向量的区别?-A(起点) B(终点)a2.向量的表示方法? 向量的大小长度称为向量的模,记作 。 3.有向线段:具有方向的线段就叫做有向线段,三个要素: 。向量与有向线段的区别:(1) 。(2) 。 4、零向量、单位向量概念: 叫零向量,记作0. 0的方向是任意的.注意0与0的含义与书写区别. 叫单位向量.说明:零向量、单位向量的定义都只是限制了大小. 5、平行向量定义: 叫平行向量;我们规定0与 平行.说明:(1)综合、才是平行向量的完整定义;(2)向量、平行,记作.6、相等向量定义: 叫相等
4、向量。说明:(1)向量与相等,记作;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.7、共线向量与平行向量关系:平行向量就是共线向量,这是因为 (与有向线段的起点无关).说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.三、理解和巩固: 例1 书本86页例1.例2判断:(1)平行向量是否一定方向相同?(2)不相等的向量是否一定不平行?(3)与零向量相等的向量必定是什么向量?(4)与任意向量都平行的向量是什么向量?(5)若两个向量在同一直线上,则这两个向
5、量一定是什么向量?(6)两个非零向量相等的当且仅当什么?(7)共线向量一定在同一直线上吗?例3下列命题正确的是( )A.与共线,与共线,则与c也共线B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点C.向量与不共线,则与都是非零向量D.有相同起点的两个非零向量不平行例4 如图,设O是正六边形ABCDEF的中心,分别写出图中与向量、相等的向量.变式一:与向量长度相等的向量有多少个?变式二:是否存在与向量长度相等、方向相反的向量?变式三:与向量共线的向量有哪些?课堂练习:1判断下列命题是否正确,若不正确,请简述理由.向量与是共线向量,则A、B、C、D四点必在一直线上;单位向量都相等;任一
6、向量与它的相反向量不相等;四边形ABCD是平行四边形当且仅当 一个向量方向不确定当且仅当模为0;共线的向量,若起点不同,则终点一定不同.2书本88页练习课后练习与提高1下列各量中不是向量的是( )A.浮力 B.风速 C.位移 D.密度2.下列说法中错误的是( )A.零向量是没有方向的 B.零向量的长度为0C.零向量与任一向量平行 D.零向量的方向是任意的3把平面上一切单位向量的始点放在同一点,那么这些向量的终点所构成的图形是( )A.一条线段 B.一段圆弧 C.圆上一群孤立点 D.一个单位圆4已知非零向量,若非零向量,则与必定 .5已知、是两非零向量,且与不共线,若非零向量与共线,则与必定 .6.设在平面上给定了一个四边形ABCD,点K、L、M、N分别是AB、BC、CD、DA的中点,则 欢迎广大教师踊跃来稿,稿酬丰厚。