1、考点规范练38直线、平面平行的判定与性质考点规范练B册第24页基础巩固组1.对于空间的两条直线m,n和一个平面,下列命题中的真命题是()A.若m,n,则mnB.若m,n,则mnC.若m,n,则mnD.若m,n,则mn答案:D解析:对A,直线m,n可能平行、异面或相交,故A错误;对B,直线m与n可能平行,也可能异面,故B错误;对C,m与n垂直而非平行,故C错误;对D,垂直于同一平面的两直线平行,故D正确.2.设l表示直线,表示平面.给出四个结论:如果l,则内有无数条直线与l平行;如果l,则内任意的直线与l平行;如果,则内任意的直线与平行;如果,对于内的一条确定的直线a,在内仅有唯一的直线与a平行
2、.以上四个结论中,正确结论的个数为()A.0B.1C.2D.3答案:C解析:中内的直线与l可异面,中可有无数条.3.平面平面的一个充分条件是()A.存在一条直线a,a,aB.存在一条直线a,a,aC.存在两条平行直线a,b,a,b,a,bD.存在两条异面直线a,b,a,b,a,b答案:D解析:若=l,al,a,a,则a,a,故排除A.若=l,a,al,则a,故排除B.若=l,a,al,b,bl,则a,b,故排除C.选D.4.如图,四边形ABCD是边长为1的正方形,MD平面ABCD,NB平面ABCD,且MD=NB=1,G为MC的中点.则下列结论中不正确的是()A.MCANB.GB平面AMNC.平
3、面CMN平面AMND.平面DCM平面ABN导学号92950835答案:C解析:显然该几何图形为正方体截去两个三棱锥所剩的几何体,把该几何体放置到正方体中(如图),取AN的中点H,连接HB,MH,则MCHB,又HBAN,所以MCAN,所以A正确;由题意易得GBMH,又GB平面AMN,MH平面AMN,所以GB平面AMN,所以B正确;因为ABCD,DMBN,且ABBN=B,CDDM=D,所以平面DCM平面ABN,所以D正确.5.如图,四棱锥P-ABCD的底面是一直角梯形,ABCD,BAAD,CD=2AB,PA底面ABCD,E为PC的中点,则BE与平面PAD的位置关系为.答案:平行解析:取PD的中点F
4、,连接EF,AF,在PCD中,EF12CD.又ABCD且CD=2AB,EFAB,四边形ABEF是平行四边形,EBAF.又EB平面PAD,AF平面PAD,BE平面PAD.6.在正四棱柱ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,则点Q满足条件时,有平面D1BQ平面PAO.答案:Q为CC1的中点解析:如图,假设Q为CC1的中点,因为P为DD1的中点,所以QBPA.连接DB,因为P,O分别是DD1,DB的中点,所以D1BPO.又D1B平面PAO,QB平面PAO,所以D1B平面PAO,QB平面PAO.又D1BQB=
5、B,所以平面D1BQ平面PAO.故Q满足条件Q为CC1的中点时,有平面D1BQ平面PAO.7.(2015山东,理17改编)如图,三棱台DEF-ABC中,AB=2DE,G,H分别为AC,BC的中点.求证:BD平面FGH.证明:(方法一)连接DG,CD,设CDGF=M.连接MH.在三棱台DEF-ABC中,AB=2DE,G为AC的中点,可得DFGC,DF=GC,所以四边形DFCG为平行四边形.则M为CD的中点.又H为BC的中点,所以HMBD,又HM平面FGH,BD平面FGH,所以BD平面FGH.(方法二)在三棱台DEF-ABC中,由BC=2EF,H为BC的中点,可得BHEF,BH=EF,所以四边形H
6、BEF为平行四边形,可得BEHF.在ABC中,G为AC的中点,H为BC的中点,所以GHAB.又GHHF=H,所以平面FGH平面ABED.因为BD平面ABED,所以BD平面FGH.导学号92950836能力提升组8.设m,n是平面内的两条不同直线,l1,l2是平面内的两条相交直线,则的一个充分不必要条件是()A.m,且l1B.ml1,且nl2C.m,且nD.m,且nl2答案:B解析:对于选项A,不合题意;对于选项B,由于l1与l2是相交直线,而且由l1m可得l1,同理可得l2,故可得,充分性成立,而由不一定能得到l1m,它们也可以异面,故必要性不成立,故选B;对于选项C,由于m,n不一定相交,故
7、是必要不充分条件;对于选项D,由于nl2可转化为n,同选项C,故不符合题意.综上选B.9.设,为三个不同的平面,m,n是两条不同的直线,在命题“=m,n,且,则mn”中的横线处填入下列三组条件中的一组,使该命题为真命题.,n;m,n;n,m.可以填入的条件有()A.B.C.D.答案:C解析:由面面平行的性质定理可知,正确;当n,m时,n和m在同一平面内,且没有公共点,所以平行,正确.选C.10.在三棱锥S-ABC中,ABC是边长为6的正三角形,SA=SB=SC=15,平面DEFH分别与AB,BC,SC,SA交于D,E,F,H.D,E分别是AB,BC的中点,如果直线SB平面DEFH,那么四边形D
8、EFH的面积为.导学号92950838答案:452解析:取AC的中点G,连接SG,BG.易知SGAC,BGAC,故AC平面SGB,所以ACSB.因为SB平面DEFH,SB平面SAB,平面SAB平面DEFH=HD,则SBHD.同理SBFE.又D,E分别为AB,BC的中点,则H,F也为AS,SC的中点,从而得HF12ACDE,所以四边形DEFH为平行四边形.又ACSB,SBHD,DEAC,所以DEHD,所以四边形DEFH为矩形,其面积S=HFHD=12AC12SB=452.11.如图,已知正方形ABCD的边长为6,点E,F分别在边AB,AD上,AE=AF=4
9、,现将AEF沿线段EF折起到AEF位置,使得AC=26.(1)求五棱锥A-BCDFE的体积;(2)在线段AC上是否存在一点M,使得BM平面AEF?若存在,求AM;若不存在,请说明理由.解:(1)连接AC,设ACEF=H,连接AH.四边形ABCD是正方形,AE=AF=4,H是EF的中点,且EFAH,EFCH,从而有AHEF,CHEF,又AHCH=H,所以EF平面AHC,且EF平面ABCD,从而平面AHC平面ABCD,过点A作AOHC,与HC相交于点O,则AO平面ABCD,因为正方形ABCD的边长为6,AE=AF=4,故AH=22,CH=42,所以cosAHC=AH2+CH2-AC22AHCH=8+32-2422242=12,所以HO=AHcosAHC=2,则AO=6,所以五棱锥A-BCDFE的体积V=1362-12446=2863.(2)线段AC上存在点M,使得BM平面AEF,此时AM=62.证明如下:连接OM,BD,BM,DM,且易知BD过O点.AM=62=14AC,HO=14HC,所以OMAH,又OM平面AEF,AH平面AEF,所以OM平面AEF,又BDEF,BD平面AEF,EF平面AEF,所以BD平面AEF,又BDOM=O,所以平面MBD平面AEF,因为BM平面MBD,所以BM平面AEF.导学号92950839