1、高考资源网( ),您身边的高考专家课前预习学案一、预习目标:通过回顾复习向量的线性运算,提出新的疑惑.为新授内容做好铺垫.二、预习内容 (一)复习回顾1实数与向量的积:实数与向量的积是一个向量,记作:(1)|= ;(2)0时与方向 ;0时与方向 ;=0时= 2运算定律结合律:()= ;分配律:(+)= , (+)= . 3. 向量共线定理 向量与非零向量共线的充要条件是:有且只有一个非零实数,使 .(二)阅读教材,提出疑惑:如何通过向量的线性运算来表示出平面内的任意向量?课内探究学案一、学习目标 1、知道平面向量基本定理; 2、理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步应用向
2、量解决实际问题; 3、能够在具体问题中适当地选取基底,使其他向量都能够用基底来表示.学习重难点:1. 教学重点:平面向量基本定理2. 教学难点:平面向量基本定理的理解与应用二、学习过程(一)定理探究:平面向量基本定理: 探究:(1) 我们把不共线向量、叫做表示这一平面内所有向量的 ;(2) 基底不惟一,关键是 ;(3) 由定理可将任一向量a在给出基底、的条件下进行分解;(4) 基底给定时,分解形式 . 即1,2是被,唯一确定的数量(二)例题讲解例1 已知向量, 求作向量-2.5+3.例2、如图 ABCD的两条对角线交于点M,且=,=,用,表示,和 例3已知 ABCD的两条对角线AC与BD交于E
3、,O是任意一点,求证:+=4例4(1)如图,不共线,=t (tR)用, 表示. (2)设不共线,点P在O、A、B所在的平面内,且.求证:A、B、P三点共线. 例5 已知 a=2e1-3e2,b= 2e1+3e2,其中e1,e2不共线,向量c=2e1-9e2,问是否存在这样的实数与c共线.(三)反思总结课后练习与提高1.设e1、e2是同一平面内的两个向量,则有( )A.e1、e2一定平行 B.e1、e2的模相等C.同一平面内的任一向量a都有a =e1+e2(、R)D.若e1、e2不共线,则同一平面内的任一向量a都有a =e1+ue2(、uR)2.已知向量a = e1-2e2,b =2e1+e2,其中e1、e2不共线,则a+b与c =6e1-2e2的关系A.不共线 B.共线 C.相等 D.无法确定3.已知向量e1、e2不共线,实数x、y满足(3x-4y)e1+(2x-3y)e2=6e1+3e2,则x-y的值等于( )A.3 B.-3 C.0 D.24.已知a、b不共线,且c =1a+2b(1,2R),若c与b共线,则1= .5.已知10,20,e1、e2是一组基底,且a =1e1+2e2,则a与e1_,a与e2_(填共线或不共线). 欢迎广大教师踊跃来稿,稿酬丰厚。