1、1. 2.1空间几何体的三视图【教学目标】 1、理解三视图的含义,能画出简单几何体的三视图,掌握画法规则.2、能根据三视图,运用空间想象能力,识别并说出它所表示的空间图形.【教学重难点】来源:Zxxk.Com教学重点:画出简单组合体的三视图教学难点:识别三视图所表示的空间几何体【教学过程】(一)情景导入“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗?(二)展示目标来源:学*
2、科*网Z*X*X*K这也是我们今天要学习的主要内容: 1 理解三视图的含义,能画出简单几何体的三视图,掌握画法规则.2能根据三视图,运用空间想象能力,识别并说出它所表示的空间图形.(三)检查预习1空间几何体的三视图是指 正视图 、 侧视图 、 俯视图 。2三视图的排列规则是 俯视图 放在正视图的下方,长度与正视图一样,侧视图 放在正视图右边,宽度与俯视图的宽度一样。3三视图的正视图、俯视图、侧视图分别是从 前 、 右 、 上 观察同一个几何体,画出的空间几何体的图形。4三视图对于认识空间几何体有何作用?你有何体会?略(四)合作探究1讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学
3、生画完后可交流结果并讨论;2教师引导学生用类比方法画出简单组合体的三视图(1)画出球放在长方体上的三视图(2)画出矿泉水瓶(实物放在桌面上)的三视图学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得。作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。(五)交流展示来源:学|科|网Z|X|X|K略(六)精讲精练例1如图甲所示,在正方体中,E、F分别是、的中点,G是正方形的中心,则四边形AGFE在该正方体的各个面上的投影可能是图乙中的。分析:在面ABCD和面上的投影是图乙(1);在面和面上的投影是图乙(2);在面和面上的投影是图乙(3)。答案:(1)(2)(3)点评1:本
4、题主要考查平行投影和空间想象能力。画出一个图形在一个平面上的投影的关键是确定该图形的关键点,如顶点等,画出这些关键点的投影,再依次连接即可得此图形在该平面上的投影。如果对平行投影理解不充分,做该类题目容易出现不知所措的情形,避免出现这种情况的方法是依据平行投影的含义,借助于空间相象来完成。变式训练:如图(1)所示,E、F分别为正方体面、面的中心,则四边形在该正方体的各个面上的投影可能是图(2)的。分析:四边形在正方体的面、面上的投影是C;在面上的投影是B;同理,在面、面、面上的投影也全是B。答案:B C例2.右图是一几何体的三视图,想象该几何体的几何结构特征,画出该几何体的形状。分析:由于俯视
5、图有一个圆和一个四边形,则该几何体是由旋转体和多面体拼接成的组合体,结合侧视图和正视图,可知该几何体是上面一个圆柱,下面是一个四棱柱拼接成的组合体。答案:上面一个圆柱,下面是一个四棱柱拼接成的组合体,该几何体的形状如图所示。变式训练2:某几何体的三视图如图所示,那么这个几何体是( )A三棱锥B四棱锥C四棱台D三棱台来源:Z+xx+k.Com分析:由所给三视图可以判定对应的几何体是四棱锥。答案:B(七)反馈测评1直线的平行投影可能是( )A点B线段C射线D曲线2如图所示,空心圆柱体的正视图是( )3如图,下列几何体各自的三视图中,有且仅有两个视图相同的是( )ABCD4三棱柱,如图所示,以的前面
6、为正前方画出的三视图正确的是( )5如图所示是一个几何体,则其几何体俯视图是( )6下列物体的正视图和俯视图中有错误的一项是( ) 【板书设计】一、指数函数1定义2. 图像3. 性质二、例题例1变式1例2变式2来源:Zxxk.Com 【作业布置】 导学案课后练习与提高1.2.1空间几何体的三视图课前预习学案一、预习目标预习空间几何体的三视图, 识别并说出它所表示的空间图形。二、预习内容1空间几何体的三视图是指 、 、 。2三视图的排列规则是 放在正视图的下方,长度与正视图一样, 放在正视图右边,宽度与俯视图的宽度一样。 3三视图的正视图、俯视图、侧视图分别是从 、 、 观察同一个几何体,画出的
7、空间几何体的图形。4三视图对于认识空间几何体有何作用?你有何体会?三、提出疑惑1下列命题正确的是( )A一个点在一个平面内的投影仍是一个点B一条线段在一个平面内的投影仍是线段C一条直线在一个平面内的投影仍是一条直线D一个三角形在一个平面内的投影仍是三角形2一个圆柱的三视图中,一定没有的图形是( )A正方形B长方形C三角形D圆3一个正方形的平行投影的形状可能是。4一个几何体的三视图如下图。则这个几何体的名称是。课内探究学案一、学习目标1了解平行投影与中心投影的概念和简单性质。 2 理解三视图的含义,能画出简单几何体的三视图,掌握画法规则。3能根据三视图,运用空间想象能力,识别并说出它所表示的空间
8、图形。学习重点:画出简单组合体的三视图学习难点:识别三视图所表示的空间几何体二、学习过程(一) 画出简单几何体的三视图探究一:怎样画出简单几何体的三视图在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗?(1)讲台上放球、长方体实物,画出它们的三视图 (2)画出球放在长方体上的三视图 (3)画出矿泉水瓶(实物放在桌面上)的三视图 (4)画完后,可把自己的作品展示并与同学交流,总结自己的作图心得总结:作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。探究二:识别三视图所表示的空间几何体投影出示图片(课本P10,图1.
9、2-3)请思考图中的三视图表示的几何体是什么? (二)精讲点拨、有效训练例1如图甲所示,在正方体中,E、F分别是、的中点,G是正方形的中心,则四边形AGFE在该正方体的各个面上的投影可能是图乙中的。点评:本题主要考查平行投影和空间想象能力。画出一个图形在一个平面上的投影的关键是确定该图形的关键点,如顶点等,画出这些关键点的投影,再依次连接即可得此图形在该平面上的投影。如果对平行投影理解不充分,做该类题目容易出现不知所措的情形,避免出现这种情况的方法是依据平行投影的含义,借助于空间相象来完成。变式训练1:如图(1)所示,E、F分别为正方体面、面的中心,则四边形在该正方体的各个面上的投影可能是图(
10、2)的。例2.右图是一几何体的三视图,想象该几何体的几何结构特征,画出该几何体的形状。变式训练2:某几何体的三视图如图所示,那么这个几何体是( )A三棱锥B四棱锥C四棱台D三棱台三、反思总结作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。四、当堂检测1直线的平行投影可能是( )A点B线段C射线D曲线2如图所示,空心圆柱体的正视图是( )3如图,下列几何体各自的三视图中,有且仅有两个视图相同的是( )ABCD4三棱柱,如图所示,以的前面为正前方画出的三视图正确的是( )5如图所示是一个几何体,则其几何体俯视图是( )6下列物体的正视图和俯视图中有错误的一项是( )课后练习与提高1
11、下列几何体各自的三视图中,有且仅有两个视图相同的是( )ABCD2用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是( )A8B7C6D53下列各图,是正六棱柱的三视图,其中画法正确的是( )4如图,图(1)、(2)、(3)是图(4)所表示的几何体的三视图,其中图(1)是 ,图(2)是 ,图(3)是 。(说出视图名称)5如图,E、F分别是正方体的面和面的中心,则四边形在该正方体的面上的正投影(投射线垂直于投影面的投影)可能是图中 (把所有可能图形的序号都填上)。6根据图中的三视图想象物体原形,并分别画出物体的实物图。参考答案: 1.D 2.C 3.B 4.正视图 侧视图 俯视图 5.(2)、(3)6.略 第 5 页