1、力与物体平衡专题二、解析典型问题问题1:弄清滑动摩擦力与静摩擦力大小计算方法的不同。当物体间存在滑动摩擦力时,其大小即可由公式计算,由此可看出它只与接触面间的动摩擦因数及正压力N有关,而与相对运动速度大小、接触面积的大小无关。正压力是静摩擦力产生的条件之一,但静摩擦力的大小与正压力无关(最大静摩擦力除外)。当物体处于平衡状态时,静摩擦力的大小由平衡条件来求;而物体处于非平衡态的某些静摩擦力的大小应由牛顿第二定律求。1. 如图1所示,质量为m,横截面为直角三角形的物块ABC,AB边靠在竖直墙面上,F是垂直于斜面BC的推力,现物块静止不动,则摩擦力的大小为_。2. 如图2所示,质量分别为m和M的两
2、物体P和Q叠放在倾角为的斜面上,P、Q之间的动摩擦因数为1,Q与斜面间的动摩擦因数为2。当它们从静止开始沿斜面滑下时,两物体始终保持相对静止,则物体P受到的摩擦力大小为: A.0 B. C. D 问题2弄清摩擦力的方向是与“相对运动或相对运动趋势的方向相反”。滑动摩擦力的方向总是与物体“相对运动”的方向相反。所谓相对运动方向,即是把与研究对象接触的物体作为参照物,研究对象相对该参照物运动的方向。当研究对象参与几种运动时,相对运动方向应是相对接触物体的合运动方向。静摩擦力的方向总是与物体“相对运动趋势”的方向相反。所谓相对运动趋势的方向,即是把与研究对象接触的物体作为参照物,假若没有摩擦力研究对
3、象相对该参照物可能出现运动的方向。3. 如图3所示,质量为m的物体放在水平放置的钢板C上,与钢板的动摩擦因素为。由于受到相对于地面静止的光滑导槽A、B的控制,物体只能沿水平导槽运动。现使钢板以速度1向右匀速运动,同时用力F拉动物体(方向沿导槽方向)使物体以速度2沿导槽匀速运动,求拉力F大小。问题3:弄清弹力有无的判断方法和弹力方向的判定方法。直接接触的物体间由于发生弹性形变而产生的力叫弹力。弹力产生的条件是“接触且有弹性形变”。若物体间虽然有接触但无拉伸或挤压,则无弹力产生。在许多情况下由于物体的形变很小,难于观察到,因而判断弹力的产生要用“反证法 ”,即由已知运动状态及有关条件,利用平衡条件
4、或牛顿运动定律进行逆向分析推理。例如,要判断图5中静止在光滑水平面上的球是否受到斜面对它的弹力作用,可先假设有弹力N2存在,则此球在水平方向所受合力不为零,必加速运动,与所给静止状态矛盾,说明此球与斜面间虽接触,但并不挤压,故不存在弹力N2。4. 如图6所示,固定在小车上的支架的斜杆与竖直杆的夹角为,在斜杆下端固定有质量为m的小球,下列关于杆对球的作用力F的判断中,正确的是:A小车静止时,F=mgsin,方向沿杆向上。B小车静止时,F=mgcos,方向垂直杆向上。C小车向右以加速度a运动时,一定有F=ma/sinD小车向左以加速度a运动时,方向斜向左上方,与竖直方向的夹角为问题4:弄清合力大小
5、的范围的确定方法。有n个力F1、F2、F3、Fn,它们合力的最大值是它们的方向相同时的合力,即Fmax=而它们的最小值要分下列两种情况讨论:(1)、若n个力F1、F2、F3、Fn中的最大力Fm大于,则它们合力的最小值是(Fm-)。(2)若n个力F1、F2、F3、Fn中的最大力Fm小于,则它们合力的最小值是0。5. 四个共点力的大小分别为2N、3N、4N、6N,它们的合力最大值为 ,它们的合力最小值为 。6. 四个共点力的大小分别为2N、3N、4N、12N,它们的合力最大值为 ,它们的合力最小值为 。问题5:弄清力的分解的不唯一性及力的分解的唯一性条件。将一个已知力F进行分解,其解是不唯一的。要
6、得到唯一的解,必须另外考虑唯一性条件。常见的唯一性条件有:1已知两个不平行分力的方向,可以唯一的作出力的平行四边形,对力F进行分解,其解是唯一的。2已知一个分力的大小和方向,可以唯一的作出力的平行四边形,对力F进行分解,其解是唯一的。力的分解有两解的条件:1已知一个分力F1的方向和另一个分力F2的大小,由图9可知: 当F2=Fsin时,分解是唯一的。当FsinF2F时,分解是唯一的。2已知两个不平行分力的大小。如图10所示,分别以F的始端、末端为圆心,以F1、F2为半径作圆,两圆有两个交点,所以F分解为F1、F2有两种情况。存在极值的几种情况。(1)已知合力F和一个分力F1的方向,另一个分力F
7、2存在最小值。(2)已知合力F的方向和一个分力F1,另一个分力F2存在最小值。7. 如图11所示,物体静止于光滑的水平面上,力F作用于物体O点,现要使合力沿着OO,方向,那么,必须同时再加一个力F,。这个力的最小值是:A、Fcos, B、Fsin,C、Ftan,D、Fcot问题6:弄清利用力的合成与分解求力的两种思路。利用力的合成与分解能解决三力平衡的问题,具体求解时有两种思路:一是将某力沿另两力的反方向进行分解,将三力转化为四力,构成两对平衡力。二是某二力进行合成,将三力转化为二力,构成一对平衡力。8. 如图12所示,在倾角为的斜面上,放一质量为m的光滑小球,球被竖直的木板挡住,则球对挡板的
8、压力和球对斜面的压力分别是多少?问题七:弄清三力平衡中的“形异质同”问题有些题看似不同,但确有相同的求解方法,实质是一样的,将这些题放在一起比较有利于提高同学们分析问题、解决问题的能力,能达到举一反三的目的。9. 如图15所示,光滑大球固定不动,它的正上方有一个定滑轮,放在大球上的光滑小球(可视为质点)用细绳连接,并绕过定滑轮,当人用力F缓慢拉动细绳时,小球所受支持力为N,则N,F的变化情况是:A、都变大; B、N不变,F变小;C、都变小; D、N变小, F不变。10. 如图16所示,绳与杆均轻质,承受弹力的最大值一定,A端用铰链固定,滑轮在A点正上方(滑轮大小及摩擦均可不计),B端吊一重物。
9、现施拉力F将B缓慢上拉(均未断),在AB杆达到竖直前A、绳子越来越容易断,B、绳子越来越不容易断,C、AB杆越来越容易断,D、AB杆越来越不容易断。11. 如图17所示竖直绝缘墙壁上的Q处有一固定 的质点A,Q正上方的P点用丝线悬挂另一质点B, A、B两质点因为带电而相互排斥,致使悬线与竖直方向成角,由于漏电使A、B两质点的带电量逐渐减小。在电荷漏完之前悬线对悬点P的拉力大小: A、保持不变; B、先变大后变小; C、逐渐减小; D、逐渐增大。问题八:弄清动态平衡问题的求解方法。根据平衡条件并结合力的合成或分解的方法,把三个平衡力转化成三角形的三条边,然后通过这个三角形求解各力的大小及变化。1
10、2. 如图19所示,保持不变,将B点向上移,则BO绳的拉力将:A 逐渐减小B 逐渐增大C 先减小后增大D 先增大后减小问题九:弄清整体法和隔离法的区别和联系。当系统有多个物体时,选取研究对象一般先整体考虑,若不能解答问题时,再隔离考虑。13. 如图21所示,三角形劈块放在粗糙的水平面上,劈块上放一个质量为m的物块,物块和劈块均处于静止状态,则粗糙水平面对三角形劈块:A有摩擦力作用,方向向左;B有摩擦力作用,方向向右;C没有摩擦力作用;D条件不足,无法判定14. 如图22所示,质量为M的直角三棱柱A放在水平地面上,三棱柱的斜面是光滑的,且斜面倾角为。质量为m的光滑球放在三棱柱和光滑竖直墙壁之间,
11、A和B都处于静止状态,求地面对三棱柱支持力和摩擦力各为多少?问题十:弄清研究平衡物体的临界问题的求解方法。物理系统由于某些原因而发生突变时所处的状态,叫临界状态。临界状态也可理解为“恰好出现”和“恰好不出现”某种现象的状态。平衡物体的临界问题的求解方法一般是采用假设推理法,即先假设怎样,然后再根据平衡条件及有关知识列方程求解。15. (2004年江苏高考试题)如图25所示,半径为R、圆心为O的大圆环固定在竖直平面内,两个轻质小圆环套在大圆环上一根轻质长绳穿过两个小圆环,它的两端都系上质量为m的重物,忽略小圆环的大小。(1)将两个小圆环固定在大圆环竖直对称轴的两侧=30的位置上(如图25)在两个
12、小圆环间绳子的中点C处,挂上一个质量M=m的重物,使两个小圆环间的绳子水平,然后无初速释放重物M设绳子与大、小圆环间的摩擦均可忽略,求重物M下降的最大距离(2)若不挂重物M小圆环可以在大圆环上自由移动,且绳子与大、小圆环间及大、小圆环之间的摩擦均可以忽略,问两个小圆环分别在哪些位置时,系统可处于平衡状态? 16. 如图27所示,物体的质量为2kg,两根轻绳AB和AC的一端连接于竖直墙上,另一端系于物体上,在物体上另施加一个方向与水平线成=600的拉力F,若要使两绳都能伸直,求拉力F的大小范围。问题十一:弄清研究平衡物体的极值问题的两种求解方法。在研究平衡问题中某些物理量变化时出现最大值或最小值
13、的现象称为极值问题。求解极值问题有两种方法:方法1:解析法。根据物体的平衡条件列方程,在解方程时采用数学知识求极值。通常用到数学知识有二次函数极值、讨论分式极值、三角函数极值以及几何法求极值等。方法2:图解法。根据物体平衡条件作出力的矢量图,如只受三个力,则这三个力构成封闭矢量三角形,然后根据图进行动态分析,确定最大值和最小值。17. 重量为G的木块与水平地面间的动摩擦因数为,一人欲用最小的作用力F使木块做匀速运动,则此最小作用力的大小和方向应如何?问题十二:弄清力的平衡知识在实际生活中的运用。18. 电梯修理员或牵引专家常常需要监测金属绳中的张力,但不能到绳的自由端去直接测量.某公司制造出一
14、种能测量绳中张力的仪器,工作原理如图31所示,将相距为L的两根固定支柱A、B(图中小圆框表示支柱的横截面)垂直于金属绳水平放置,在AB的中点用一可动支柱C向上推动金属绳,使绳在垂直于AB的方向竖直向上发生一个偏移量,这时仪器测得绳对支柱C竖直向下的作用力为F.(1)试用L、F表示这时绳中的张力T.(2)如果偏移量,作用力F=400NL=250,计算绳中张力的大小 三、警示易错试题警示1::注意“死节”和“活节”问题。19. 如图33所示,长为5m的细绳的两端分别系于竖立在地面上相距为4m的两杆的顶端A、B ,绳上挂一个光滑的轻质挂钩,其下连着一个重为12N的物体,平衡时,问:绳中的张力T为多少
15、? A点向上移动少许,重新平衡后,绳与水平面夹角,绳中张力如何变化?20. 如图34所示,AO、BO和CO三根绳子能承受的最大拉力相等,O为结点,OB与竖直方向夹角为,悬挂物质量为m。 求OA、OB、OC三根绳子拉力的大小 。 A点向上移动少许,重新平衡后,绳中张力如何变化? 警示2:注意“死杆”和“活杆”问题。21. 如图37所示,质量为m的物体用细绳OC悬挂在支架上的O点,轻杆OB可绕B点转动,求细绳OA中张力T大小和轻杆OB受力N大小。22. 如图38所示,水平横梁一端A插在墙壁内,另一端装有小滑轮B,一轻绳一端C固定于墙壁上,另一端跨过滑轮后悬挂一质量为m=10kg的重物,则滑轮受到绳子作用力为:A. 50N B. C. 100ND.