收藏 分享(赏)

2018年秋新课堂高中数学北师大版选修2-3学业分层测评 第2章 5 第2课时 离散型随机变量的方差 WORD版含解析.doc

上传人:高**** 文档编号:154331 上传时间:2024-05-25 格式:DOC 页数:7 大小:101KB
下载 相关 举报
2018年秋新课堂高中数学北师大版选修2-3学业分层测评 第2章 5 第2课时 离散型随机变量的方差 WORD版含解析.doc_第1页
第1页 / 共7页
2018年秋新课堂高中数学北师大版选修2-3学业分层测评 第2章 5 第2课时 离散型随机变量的方差 WORD版含解析.doc_第2页
第2页 / 共7页
2018年秋新课堂高中数学北师大版选修2-3学业分层测评 第2章 5 第2课时 离散型随机变量的方差 WORD版含解析.doc_第3页
第3页 / 共7页
2018年秋新课堂高中数学北师大版选修2-3学业分层测评 第2章 5 第2课时 离散型随机变量的方差 WORD版含解析.doc_第4页
第4页 / 共7页
2018年秋新课堂高中数学北师大版选修2-3学业分层测评 第2章 5 第2课时 离散型随机变量的方差 WORD版含解析.doc_第5页
第5页 / 共7页
2018年秋新课堂高中数学北师大版选修2-3学业分层测评 第2章 5 第2课时 离散型随机变量的方差 WORD版含解析.doc_第6页
第6页 / 共7页
2018年秋新课堂高中数学北师大版选修2-3学业分层测评 第2章 5 第2课时 离散型随机变量的方差 WORD版含解析.doc_第7页
第7页 / 共7页
亲,该文档总共7页,全部预览完了,如果喜欢就下载吧!
资源描述

1、学业分层测评(建议用时:45分钟)学业达标一、选择题1有甲、乙两种水稻,测得每种水稻各10株的分蘖数据,计算出样本方差分别为DX甲11,DX乙3.4.由此可以估计()A甲种水稻比乙种水稻分蘖整齐B乙种水稻比甲种水稻分蘖整齐C甲、乙两种水稻分蘖整齐程度相同D甲、乙两种水稻分蘖整齐程度不能比较【解析】DX甲DX乙,乙种水稻比甲种水稻整齐【答案】B2设二项分布B(n,p)的随机变量X的均值与方差分别是2.4和1.44,则二项分布的参数n,p的值为()An4,p0.6Bn6,p0.4Cn8,p0.3Dn24,p0.1【解析】由题意得,np2.4,np(1p)1.44,1p0.6,p0.4,n6.【答案

2、】B3已知随机变量X的分布列为P(Xk),k3,6,9.则DX等于()A6B9C3D4【解析】EX3696.DX(36)2(66)2(96)26.【答案】A4同时抛掷两枚均匀的硬币10次,设两枚硬币同时出现反面的次数为,则D() 【导学号:62690045】A. B. C.D5【解析】两枚硬币同时出现反面的概率为,故B,因此D10.故选A.【答案】A5已知X的分布列为X101P则EX,DX,P(X0),其中正确的个数为()A0B1 C2D3【解析】EX(1)01,故正确;DX222,故不正确;P(X0)显然正确【答案】C二、填空题6随机变量的取值为0,1,2.若P(0),E1,则D_.【解析】

3、设P(1)a,P(2)b,则解得所以D01.【答案】7设一次试验成功的概率为p,进行100次独立重复试验,当p_时,成功次数的标准差的值最大,其最大值为_【解析】由独立重复试验的方差公式可以得到Dnp(1p)n2,等号在p1p时成立,所以(D)max10025,5.【答案】58一次数学测验由25道选择题构成,每个选择题有4个选项,其中有且仅有一个选项是正确的,每个答案选择正确得4分,不作出选择或选错不得分,满分100分,某学生选对任一题的概率为0.6,则此学生在这一次测验中的成绩的均值与方差分别为_【解析】设该学生在这次数学测验中选对答案的题目的个数为X,所得的分数(成绩)为Y,则Y4X.由题

4、知XB(25,0.6),所以EX250.615,DX250.60.46,EYE(4X)4EX60,DYD(4X)42DX16696,所以该学生在这次测验中的成绩的均值与方差分别是60与96.【答案】60,96三、解答题9海关大楼顶端镶有A、B两面大钟,它们的日走时误差分别为X1,X2(单位:s),其分布列如下:X121012P0.050.050.80.050.05X221012P0.10.20.40.20.1根据这两面大钟日走时误差的均值与方差比较这两面大钟的质量【解】EX10,EX20,EX1EX2.DX1(20)20.05(10)20.05(00)20.8(10)20.05(20)20.0

5、50.5;DX2(20)20.1(10)20.2(00)20.4(10)20.2(20)20.11.2.DX1DX2.由上可知,A面大钟的质量较好10袋中有20个大小相同的球,其中记上0号的有10个,记上n号的有n个(n1,2,3,4)现从袋中任取一球,X表示所取球的标号(1)求X的分布列、期望和方差;(2)若YaXb,EY1,DY11,试求a,b的值【解】(1)X的分布列为:X01234PEX012341.5.DX(01.5)2(11.5)2(21.5)2(31.5)2(41.5)22.75.(2)由DYa2DX,得a22.7511,得a2.又EYaEXb,所以当a2时,由121.5b,得b

6、2;当a2时,由121.5b,得b4.或即为所求能力提升1若X是离散型随机变量,P(Xx1),P(Xx2),且x1x2,又已知EX,DX,则x1x2的值为()A. B. C3 D.【解析】EXx1x2.x242x1,DX22.x1x2,x1x23.【答案】C2设随机变量的分布列为P(k)Cknk,k0,1,2,n,且E24,则D的值为()A8B12 C.D16【解析】由题意可知B,nE24,n36.又Dn368.【答案】A3变量的分布列如下:101Pabc其中a,b,c成等差数列,若E,则D的值是_. 【导学号:62690046】【解析】由a,b,c成等差数列可知2bac,又abc3b1,b,

7、ac.又Eac,a,c,故分布列为101PD222.【答案】4一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图253所示图253将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望EX及方差DX.【解】(1)设A1表示事件“日销售量不低于100个”,A2表示事件“日销售量低于50个”,B表示事件“在未来连续3天里有连续2天的日销售量不低于100个且另1天的日销售量低于50个”因此P(A1)(0.0060.0040.002)500.6,P(A2)0.003500.15,P(B)0.60.60.1520.108.(2)X可能取的值为0,1,2,3,相应的概率为P(X0)C(10.6)30.064,P(X1)C0.6(10.6)20.288,P(X2)C0.62(10.6)0.432,P(X3)C0.630.216,则X的分布列为X0123P0.0640.2880.4320.216因为XB(3,0.6),所以期望EX30.61.8,方差DX30.6(10.6)0.72.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3