1、2.2.2椭圆及其简单几何性质(1)导学案学习目标 1根据椭圆的方程研究曲线的几何性质,并正确地画出它的图形;2根据几何条件求出曲线方程,并利用曲线的方程研究它的性质,画图学习过程 一、学情调查、情境导入复习1: 椭圆上一点到左焦点的距离是,那么它到右焦点的距离是 复习2:方程表示焦点在轴上的椭圆,则的取值范围是 二、问题展示、合作探究学习探究问题1:椭圆的标准方程,它有哪些几何性质呢?图形:范围: :对称性:椭圆关于 轴、 轴和 都对称;顶点:( ),( ),( ),( );长轴,其长为 ;短轴,其长为 ;离心率:刻画椭圆 程度椭圆的焦距与长轴长的比称为离心率,记,且试试:椭圆的几何性质呢?
2、范围: :对称性:椭圆关于 轴、 轴和 都对称;顶点:( ),( ),( ),( );长轴,其长为 ;短轴,其长为 ;离心率: = 反思:或的大小能刻画椭圆的扁平程度吗? 典型例题例1 求椭圆的长轴和短轴的长、离心率、焦点和顶点的坐标变式:若椭圆是呢?小结:先化为标准方程,找出 ,求出; 注意焦点所在坐标轴例2 点与定点的距离和它到直线的距离的比是常数,求点的轨迹小结:到定点的距离与到定直线的距离的比为常数(小于1)的点的轨迹是椭圆 动手试试练求适合下列条件的椭圆的标准方程:焦点在轴上,;焦点在轴上,;经过点,;长轴长等到于,离心率等于三、达标训练、巩固提升(时量:5分钟 满分:10分)计分:1若椭圆的离心率,则的值是( )A B或 C D或2若椭圆经过原点,且焦点分别为,则其离心率为( )A B C D3短轴长为,离心率的椭圆两焦点为,过作直线交椭圆于两点,则的周长为( )A B C D4已知点是椭圆上的一点,且以点及焦点为顶点的三角形的面积等于,则点的坐标是 5某椭圆中心在原点,焦点在轴上,若长轴长为,且两个焦点恰好将长轴三等分,则此椭圆的方程是 四、知识梳理、归纳总结课后作业 1比较下列每组椭圆的形状,哪一个更圆,哪一个更扁?与 ; 与 2求适合下列条件的椭圆的标准方程:经过点,;长轴长是短轴长的倍,且经过点;焦距是,离心率等于