1、21.2演绎推理明目标、知重点1.理解演绎推理的意义.2.掌握演绎推理的基本模式,并能运用它们进行一些简单推理.3.了解合情推理和演绎推理之间的区别和联系1演绎推理由概念的定义或一些真命题,依照一定的逻辑规则得到正确结论的过程,通常叫做演绎推理2演绎推理的特征当前提为真时,结论必然为真3三段论推理,三段论的一般表示M是P,S是M;所以,S是P.情境导学小明是一名高二年级的学生,17岁,迷恋上网络,沉迷于虚拟的世界当中由于每月的零花钱不够用,便向亲戚邻人要钱,但这仍然满足不了需求,于是就产生了歹念,强行向路人抢取钱财但小明却说我是未成年人而且就抢了50元,这应该不会很严重吧?如果你是法官,你会如
2、何判决呢?小明到底是不是犯罪呢?探究点一演绎推理与三段论思考1分析下面几个推理,找出它们的共同点(1)所有的金属都能导电,铀是金属,所以铀能够导电;(2)一切奇数都不能被2整除,(21001)是奇数,所以(21001)不能被2整除;(3)三角函数都是周期函数,tan 是三角函数,因此tan 是周期函数;(4)两条直线平行,同旁内角互补如果A与B是两条平行直线的同旁内角,那么AB180.答思考1中的推理都是从一般性的原理出发,推出某个特殊情况下的结论思考2演绎推理有什么特点?演绎推理的结论一定正确吗?答演绎推理是从一般到特殊的推理演绎推理的前提是一般性原理,结论是蕴含于前提之中的个别、特殊事实在
3、演绎推理中,前提和结论之间存在必然的联系,只要前提是真实的,推理形式是正确的,结论必定是正确的思考3演绎推理一般是怎样的模式?答“三段论”是演绎推理的一般模式,它包括:(1)大前提已知的一般原理;(2)小前提所研究的特殊情况;(3)结论根据一般原理,对特殊情况做出的判断例1将下列演绎推理写成三段论的形式(1)平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分;(2)等腰三角形的两底角相等,A,B是等腰三角形的底角,则AB;(3)通项公式为an2n3的数列an为等差数列解(1)平行四边形的对角线互相平分,大前提菱形是平行四边形,小前提菱形的对角线互相平分结论(2)等腰三角形的
4、两底角相等,大前提A,B是等腰三角形的底角,小前提AB.结论(3)数列an中,如果当n2时,anan1为常数,则an为等差数列,大前提通项公式为an2n3时,若n2,则anan12n32(n1)32(常数),小前提通项公式为an2n3的数列an为等差数列结论反思与感悟用三段论写推理过程时,关键是明确大、小前提,三段论中的大前提提供了一个一般性的原理,小前提指出了一种特殊情况,两个命题结合起来,揭示了一般原理与特殊情况的内在联系有时可省略小前提,有时甚至也可把大前提与小前提都省略,在寻找大前提时,可找一个使结论成立的充分条件作为大前提跟踪训练1把下列推断写成三段论的形式:(1)因为ABC三边的长
5、依次为3,4,5,所以ABC是直角三角形;(2)函数y2x5的图象是一条直线;(3)ysin x(xR)是周期函数解(1)一条边的平方等于其他两条边平方和的三角形是直角三角形,大前提ABC三边的长依次为3,4,5,而324252,小前提ABC是直角三角形结论(2)一次函数ykxb(k0)的图象是一条直线,大前提函数y2x5是一次函数,小前提函数y2x5的图象是一条直线结论(3)三角函数是周期函数,大前提ysin x(xR)是三角函数,小前提ysin x(xR)是周期函数结论 探究点二三段论推理中的易错点例2指出下列推理中的错误,并分析产生错误的原因:(1)整数是自然数,大前提3是整数,小前提3
6、是自然数结论(2)常数函数的导函数为0,大前提函数f(x)的导函数为0,小前提f(x)为常数函数结论(3)无限不循环小数是无理数,大前提(0.333 33)是无限不循环小数,小前提是无理数结论解(1)结论是错误的,原因是大前提错误自然数是非负整数(2)结论是错误的,原因是推理形式错误大前提指出的一般性原理中结论为“导函数为0”,因此演绎推理的结论也应为“导函数为0”(3)结论是错误的,原因是小前提错误.(0.333 33)是循环小数而不是无限不循环小数反思与感悟演绎推理的结论是否正确,取决于该推理的大前提、小前提和推理形式是否全部正确,因此,分析推理中的错因实质就是判断大前提、小前提和推理形式
7、是否正确跟踪训练2指出下列推理中的错误,并分析产生错误的原因:(1)因为中国的大学分布在中国各地,大前提北京大学是中国的大学,小前提所以北京大学分布在中国各地结论(2)因为所有边长都相等的凸多边形是正多边形,大前提而菱形是所有边长都相等的凸多边形,小前提所以菱形是正多边形结论解(1)推理形式错误大前提中的M是“中国的大学”,它表示中国的各所大学,而小前提中M虽然也是“中国的大学”,但它表示中国的一所大学,二者是两个不同的概念,故推理形式错误(2)结论是错误的,原因是大前提错误因为所有边长都相等,内角也都相等的凸多边形才是正多边形探究点三三段论的应用例3如图,在锐角三角形ABC中,ADBC,BE
8、AC,D,E是垂足,求证:AB的中点M到点D,E的距离相等证明(1)因为有一个内角是直角的三角形是直角三角形,大前提在ABD中,ADBC,即ADB90,小前提所以ABD是直角三角形结论同理,AEB也是直角三角形(2)因为直角三角形斜边上的中线等于斜边的一半,大前提因为DM是直角三角形ABD斜边上的中线,小前提所以DMAB.结论同理EMAB.所以DMEM.反思与感悟应用三段论证明问题时,要充分挖掘题目外在和内在条件(小前提),根据需要引入相关的适用的定理和性质(大前提),并保证每一步的推理都是正确的,严密的,才能得出正确的结论如果大前提是显然的,则可以省略跟踪训练3已知:在空间四边形ABCD中,
9、点E,F分别是AB,AD的中点,如图所示,求证:EF平面BCD. 证明三角形的中位线平行于底边,大前提点E、F分别是AB、AD的中点,小前提所以EFBD.结论若平面外一条直线平行于平面内一条直线则直线与此平面平行,大前提EF平面BCD,BD平面BCD,EFBD,小前提EF平面BCD.结论1下面几种推理过程是演绎推理的是()A两条直线平行,同旁内角互补,如果A与B是两条平行直线的同旁内角,则AB180B某校高三1班有55人,2班有54人,3班有52人,由此得高三所有班人数超过50人C由平面三角形的性质,推测空间四边形的性质D在数列an中a11,an(n2),由此归纳出an的通项公式答案A解析A是
10、演绎推理,B、D是归纳推理,C是类比推理2已知正方形的对角线相等;矩形的对角线相等;正方形是矩形根据“三段论”推理出一个结论则这个结论是_答案正方形的对角线相等解析根据演绎推理的特点,正方形与矩形是特殊与一般的关系,所以结论是正方形的对角线相等3把“函数yx2x1的图象是一条抛物线”恢复成三段论,则大前提:_;小前提:_;结论:_.答案二次函数的图象是一条抛物线函数yx2x1是二次函数函数yx2x1的图象是一条抛物线4.如图,在ABC中,ACBC,CD是AB边上的高,求证:ACDBCD.证明:在ABC中,因为CDAB,ACBC,所以ADBD, 于是ACDBCD. 则在上面证明的过程中错误的是_(只填序号)答案解析由ADBD,得到ACDBCD的推理的大前提应是“在同一三角形中,大边对大角”,小前提是“ADBD”,而AD与BD不在同一三角形中,故错误呈重点、现规律1演绎推理是从一般性原理出发,推出某个特殊情况的推理方法;只要前提和推理形式正确,通过演绎推理得到的结论一定正确2在数学中,证明命题的正确性都要使用演绎推理,推理的一般模式是三段论,证题过程中常省略三段论的大前提