收藏 分享(赏)

江苏省淮安市淮海中学2017届高三12月考试数学(文)试题WORD版含答案.doc

上传人:高**** 文档编号:1491556 上传时间:2024-06-07 格式:DOC 页数:8 大小:585KB
下载 相关 举报
江苏省淮安市淮海中学2017届高三12月考试数学(文)试题WORD版含答案.doc_第1页
第1页 / 共8页
江苏省淮安市淮海中学2017届高三12月考试数学(文)试题WORD版含答案.doc_第2页
第2页 / 共8页
江苏省淮安市淮海中学2017届高三12月考试数学(文)试题WORD版含答案.doc_第3页
第3页 / 共8页
江苏省淮安市淮海中学2017届高三12月考试数学(文)试题WORD版含答案.doc_第4页
第4页 / 共8页
江苏省淮安市淮海中学2017届高三12月考试数学(文)试题WORD版含答案.doc_第5页
第5页 / 共8页
江苏省淮安市淮海中学2017届高三12月考试数学(文)试题WORD版含答案.doc_第6页
第6页 / 共8页
江苏省淮安市淮海中学2017届高三12月考试数学(文)试题WORD版含答案.doc_第7页
第7页 / 共8页
江苏省淮安市淮海中学2017届高三12月考试数学(文)试题WORD版含答案.doc_第8页
第8页 / 共8页
亲,该文档总共8页,全部预览完了,如果喜欢就下载吧!
资源描述

1、淮海中学2017届高三第二次阶段性测试 数学试题(文科) 2016.12.15参考公式:样本数据,的方差,其中=一、填空题:本大题共14小题,每小题5分,共70分把答案填写在答题卡相应位置上1.设集合,则 2.函数的最小正周期是 3.已知复数满足(是虚数单位),则的模为 4设函数,若,则 5.矩形ABCD由两个正方形拼成,则CAE的正切值为 ABCDFE(第5题图)6. 若直线l1:x2y40与l2:mx(2m)y30平行,则实数m的值为 7.等比数列中,已知,则数列前k项的和 8. 已知点是函数图象上的一点,则曲线在点处的切线斜率取得最大值时切线的方程是 9.若= 10.在等腰梯形ABCD中

2、,已知ABDC,AB=2,BC=1,ABC=60,点E和F分别在线段BC和DC上,且的值为 11. 等比数列的首项为2,公比为3,前项的和为,若的最小值为 12. 在平面直角坐标系xoy中,已知点,,若直线x-y+m=0上存在点P,使得2PA=PB,则实数m的取值范围为 13.已知函数有两个不同的实根,则实数k的取值范围是 14. 已知函数,若关于x的不等式的解集为,且,则实数m的取值范围是 二、解答题:本大题共6小题,共计90分请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤15.(本小题满分14分)在三角形ABC中,角A、B、C的对边分别为,且(1)求角A的值;(2)若三

3、角形面积为,且,求三角形ABC的周长.ABCxO16. (本小题满分14分)如图已知四边形AOCB中,点B位于第一象限,若BOC为正三角形.(1)若求点A的坐标;(2)记向量与的夹角为,求的值. 17.(本小题满分14分)如图,在半径为的半圆形铁皮上截取一块矩形材料ABCD(点A、B在直径上,点C、D在半圆周上),并将其卷成一个以AD为母线的圆柱体罐子的侧面(不计剪裁和拼接损耗), (第17题图)(1)若要求圆柱体罐子的侧面积最大,应如何截取?(2)若要求圆柱体罐子的体积最大,应如何截取? 11111118.(本小题满分16分)如图,在平面直角坐标系中,已知A、B、C是椭圆上不同的三点,C在第

4、三象限,线段BC的中点在直线OA上。(1)求椭圆的标准方程;(2)求点C的坐标;(3)设动点P在椭圆上(异于点A、B、C)且直线PB, PC 分 别 交直线OA于M、N两点,证明为定值并求出该定值.19.(本小题满分16分)已知数列和满足若为等比数列,且(1)求和;(2)设,记数列的前项和为求;求正整数 k,使得对任意均有.20.(本小题满分16分)已知函数(1)求函数的极值;(2)若时,函数有且只有一个零点,求实数的值;(3若,对于区间上的任意两个不相等的实数,都有成立,求实数的取值范围.淮海中学2017届高三第二次阶段性测试文科参考答案一、填空题:11,2,3 2. 3. 4.-9 5 6

5、. 7.364 8. 9 10 11 12 13 14二、解答题:15(本小题满分14分)解:(1)因为 ,由正弦定理得, 即=sin(A+C) 4分 1111因为BAC,所以sinB=sin(A+C),所以因为B(0,),所以sinB0, 所以,因为,所以 7分(2)ABC的面积为,且由,所以12分 周长 14分16.解:(1)2分5分点坐标为7分(2)向量9分12分因此,14分17.解:(1)如图,设圆心为O,连结,设,法一 易得,故所求矩形的面积为 3分 ()(当且仅当,()时等号成立) 此时 ; 6分 法二 设,; 则, 所以矩形的面积为, 3分 当,即时,()此时 ; 6分(2)设圆

6、柱的底面半径为,体积为,由得, 所以,其中, 9分由得,此时,在上单调递增,在上单调递减, 故当时,体积最大为 ,13分答:(1)当截取的矩形铁皮的一边为为时,圆柱体罐子的侧面积最大(2)当截取的矩形铁皮的一边为为时,圆柱体罐子的体积最大14分18解:(1)由已知,得 解得 所以椭圆的标准方程为 4分(2)设点,则中点为 由已知,求得直线的方程为,从而 又点在椭圆上, 由,解得(舍),从而 所以点的坐标为8分(3)设,三点共线,整理,得10分三点共线,整理,得12分点在椭圆上, 从而 14分所以为定值,定值为 16分19解:(1)由题意a1a2a3an,b3b26,知a3()b3b28. 设数

7、列an的公比为q,又由a12,得,q2(q2舍去),所以数列an的通项为an2n(nN*)3分所以,a1a2a3an2()n(n1)故数列bn的通项为bnn(n1)(nN*) 6分(2)(i)由(1)知cn(nN*)所以Sn(nN*) 10分(ii)因为c10,c20,c30,c40,当n5时,cn,而0,得1,所以,当n5时,cn0.综上,若对任意nN*恒有SkSn,则k4. 16分20(1)当时,f (x)在上递增,f (x)无极值 2分当时,时,f (x)递减; 时,f (x)递增,所以f (x)有极小值综上,当时,f (x)无极值;当时,f (x)有极小值,无极大值4分(2),则因为,令,得,故h (x)在上递减,在上递增,所以h (x)有极小值 6分且 联立可得令,得,故m (x)在上递增又m (1) = 0,所以,即 10分(3)不妨令,因为0 a 1,则由(1)可知,因为1111所以所以在11,2上递增 所以在11,2上恒成立, 12分即在11,2上恒成立 令,则, 14分 所以 16分

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3