1、-1-23.2 中心对称 第 3 课时 教学内容 1中心对称图形的概念 2对称中心的概念及其它们的运用 教学目标 了解中心对称图形的概念及中心对称图形的对称中心的概念,掌握这两个概念的应用 复习两个图形关于中心对称的有关概念,利用这个所学知识探索一个图形是中心对称图形的有关概念及其它的运用 重难点、关键 1重点:中心对称图形的有关概念及其它们的运用 2难点与关键:区别关于中心对称的两个图形和中心对称图形 教具、学具准备 小黑板、三角形 教学过程 一、复习引入 1(老师口问)口答:关于中心对称的两个图形具有什么性质?(老师口述):关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中
2、心所平分 关于中心对称的两个图形是全等图形 2(学生活动)作图题(1)作出线段 AO 关于 O 点的对称图形,如图所示 (2)作出三角形 AOB 关于 O 点的对称图形,如图所示 (2)延长 AO 使 OC=AO,延长 BO 使 OD=BO,连结 CD 则COD 为所求的,如图所示 二、探索新知 AOBAO-2-BACDO 从另一个角度看,上面的(1)题就是将线段 AB 绕它的中点旋转 180,因为 OA=OB,所以,就是线段 AB 绕它的中点旋转 180后与它重合 上面的(2)题,连结 AD、BC,则刚才的两个关于中心对称的两个图形,就成平行四边形,如图所示 AO=OC,BO=OD,AOB=
3、COD AOBCOD AB=CD 也就是,ABCD 绕它的两条对角线交点 O 旋转 180后与它本身重合 因此,像这样,把一个图形绕着某一个点旋转 180,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心 (学生活动)例 1:从刚才讲的线段、平行四边形都是中心对称图形外,每一位同学举出三个图形,它们也是中心对称图形 老师点评:老师边提问学生边解答 (学生活动)例 2:请说出中心对称图形具有什么特点?老师点评:中心对称图形具有匀称美观、平稳 例 3求证:如图任何具有对称中心的四边形是平行四边形 分析:中心对称图形的对称中心是对应点连线的交点,也是对应点间
4、的线段中点,因此,直接可得到对角线互相平分 证明:如图,O 是四边形 ABCD 的对称中心,根据中心对称性质,线段 AC、BD 必过点 O,且 AO=CO,BO=DO,即四边形 ABCD 的对角线互相平分,因此,四边形 ABCD 是平行四边形 三、巩固练习 教材 练习 四、应用拓展 例 4如图,矩形 ABCD 中,AB=3,BC=4,若将矩形折叠,使 C 点和 A 点重合,求折痕EF 的长 分析:将矩形折叠,使 C 点和 A 点重合,折痕为 EF,就是 A、C 两点关于 O 点对称,这方面的知识在解决一些翻折问题中起关键作用,对称点连线被对称轴垂直平分,进而转化为中垂线性质和勾股定理的应用,求
5、线段长度或面积 解:连接 AF,点 C 与点 A 重合,折痕为 EF,即 EF 垂直平分 AC BACDO-3-21085 AF=CF,AO=CO,FOC=90,又四边形 ABCD 为矩形,B=90,AB=CD=3,AD=BC=4 设 CF=x,则 AF=x,BF=4-x,由勾股定理,得 AC2=BC2+AB2=52 AC=5,OC=AC=AB2+BF2=AF232+(4-x)=2=x2 x=FOC=90 OF2=FC2-OC2=()2-()2=()2 OF=同理 OE=,即 EF=OE+OF=五、归纳小结(学生归纳,老师点评)本节课应掌握:1中心对称图形的有关概念;2应用中心对称图形解决有关
6、问题 六、布置作业 1教材 综合运用 5 拓广探索 8、9 2选用作业设计 作业设计 一、选择题 1下列图形中,既是轴对称图形,又是中心对称图形的是()A等边三角形 B等腰梯形 C平行四边形 D正六边形 2下列图形中,是中心对称图形,但不是轴对称图形的是()A正方形 B矩形 C菱形 D平行四边形 3如图所示,平放在正立镜子前的桌面上的数码“21085”在镜子中的像是()A21085 B28015 C58012 D51082 二、填空题 1把一个图形绕着某一个点旋转 180,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做_ 2请你写出你所熟悉的三个中心对称图形_ 125225825852
7、158158158154-4-3中心对称图形具有什么特点(至少写出两个)_ 三、解答题 1在平面内,如果一个图形绕一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角称为这个图形的一个旋转角,例如:正方形绕着它的对角线的交点旋转 90后能与自身重合,所以正方形是旋转对称图形,应有一个旋转角为 90 (1)判断下列命题的真假(在相应括号内填上“真”或“假”)等腰梯形是旋转对称图形,它有一个旋转角为 180;()矩形是旋转对称图形,它有一个旋转角为 180;()(2)填空:下列图形中是旋转对称图形,且有一个旋转角为 120是_(写出所有正确结论的序号)正三角形;正方形
8、;正六边形;正八边形(3)写出两个多边形,它们都是旋转对称图形,却有一个旋转角为 72,并且分别满足下列条件:是轴对称图形,但不是中心对称图形;既是轴对称图形,又是中心对称图形 2如图,将矩形 A1B1C1D1沿 EF 折叠,使 B1点落在 A1D1边上的 B 处;沿 BG 折叠,使 D1点落在 D 处且 BD 过 F 点 (1)求证:四边形 BEFG 是平行四边形;(2)连接 BB,判断B1BG 的形状,并写出判断过程 3如图,直线 y=2x+2 与 x 轴、y 轴分别交于 A、B 两点,将AOB 绕点 O顺时针旋转90得到A1OB1(1)在图中画出A1OB1;(2)设过 A、A1、B 三点
9、的函数解析式为 y=ax2+bx+c,求这个解析式 D1C1B1A1BACEDGFOBA-1yx2-5-答案:一、1D 2D 3D 二、1中心对称图形 2答案不唯一 3答案不唯一 三、1(1)假 真 (2)(3)例如正五边形 正十五边形 例如正十边 正二十边形 2(1)证明:A1D1B1C1,A1BD=C1FB 又四边形 ABEF 是由四边形 A1B1EF 翻折的,B1FE=EFB,同理可得:FBG=D1BG,EFB=90-C1FB,FBG=90-A1BD,EFB=FBG EFBG,EBFG 四边形 BEFG 是平行四边形 (2)直角三角形,理由:连结 BB,BD1FC1,BGF=D1BG,FGB=FBG 同理可得:B1BF=FB1B B1BG=90,B1BG 是直角三角形 3解:(1)如右图所示 (2)由题意知 A、A1、B1三点的坐标分别是(-1,0),(0,1),(2,0)解这个方程组得 所求五数解析式为 y=-x2+x+1 1212B1A1OBA-21-1yx221-101042abccabc 12121abc 1212