收藏 分享(赏)

冀教版九下数学30.4第1课时抛物线形问题教案.docx

上传人:高**** 文档编号:144067 上传时间:2024-05-25 格式:DOCX 页数:2 大小:635.10KB
下载 相关 举报
冀教版九下数学30.4第1课时抛物线形问题教案.docx_第1页
第1页 / 共2页
冀教版九下数学30.4第1课时抛物线形问题教案.docx_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述

1、30.4 二次函数的应用第1课时 抛物线形问题1掌握二次函数模型的建立,会把实际问题转化为二次函数问题2利用二次函数解决拱桥、涵洞关问题3能运用二次函数的图象与性质进行决策 一、情境导入某大学的校门是一抛物线形的水泥建筑物(如图所示),大门的宽度为8米,两侧距地面4米高处各挂有一个挂校名横匾用的铁环,两铁环的水平距离为6米,请你确定校门的高度是多少?二、合作探究探究点:拱桥、涵洞问题如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米水面下降1米时,水面的宽度为_米解析:如图,建立直角坐标系,设这条抛物线为yax2,把点(2,2)代入,得2a22,a,yx2,当

2、y3时,x23,x.故答案为2.方法总结:在解决呈抛物线形状的实际问题时,通常的步骤是:(1)建立合适的平面直角坐标系;(2)将实际问题中的数量转化为点的坐标;(3)设出抛物线的解析式,并将点的坐标代入函数解析式,求出函数解析式;(4)利用函数关系式解决实际问题 如图,某隧道横截面的上下轮廓线分别由抛物线对称的一部分和矩形的一部分构成,最大高度为6米,底部宽度为12米现以O点为原点,OM所在直线为x轴建立直角坐标系(1)直接写出点M及抛物线顶点P的坐标;(2)求出这条抛物线的函数关系式;(3)若要搭建一个矩形“支撑架”ADDCCB,使C、D点在抛物线上,A、B点在地面OM上,则这个“支撑架”总

3、长的最大值是多少?解析:解决问题的思路是首先建立适当的坐标系,挖掘条件确定图象上点的坐标M(12,0)和抛物线顶点P(6,6);已知顶点坐标,可设二次函数关系式为ya(x6)26,可利用待定系数法求出二次函数关系式;再利用二次函数上某些点的坐标特征,求出有关“支撑架”总长ADDCCB二次函数的关系式,根据二次函数的性质,求出最值,从而解决问题解:(1)根据题意,分别求出M(12,0),最大高度为6米,点P的纵坐标为6,底部宽度为12米,所以点P的横坐标为6,即P(6,6)(2)设此函数关系式为ya(x6)26.因为函数ya(x6)26经过点(0,3),所以3a(06)26,即a.所以此函数关系式为y(x6)26x2x3.(3)设A(m,0),则B(12m,0),C(12m,m2m3),D(m,m2m3)即“支撑架”总长ADDCCB(m2m3)(122m)(m2m3)m218.因为此二次函数的图象开口向下所以当m0时,ADDCCB有最大值为18.三、板书设计建立二次函数模型:(1)拱桥问题;(2)涵洞问题.教学过程中,强调学生自主探索和合作交流,经历将实际问题转化为函数问题,建立二次函数模型,解决生活中的实际问题.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3