1、知识梳理:1函数的极值(1)判断f(x0)是极值的方法一般地,当函数f(x)在点x0处连续时,如果在x0附近的左侧f(x)0,右侧f(x)0,那么f(x0)是极大值;如果在x0附近的左侧f(x)0,右侧f(x)0,那么f(x0)是极小值 (2)求可导函数极值的步骤求f(x);求方程f(x)0的根;检查f(x)在方程f(x)0的根左右值的符号如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值,如果左右两侧符号一样,那么这个根不是极值点2函数的最值 (1)在闭区间a,b上连续的函数f(x)在a,b上必有最大值与最小值(2)若函数f(x)在a,b上单调递增
2、,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在a,b上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值(3)设函数f(x)在a,b上连续,在(a,b)内可导,求f(x)在a,b上的最大值和最小值的步骤如下:求f(x)在(a,b)内的极值;将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值3利用导数解决生活中的优化问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式yf(x);(2)求函数的导数f(x),解方程f(x)0;(3)比较函数在区间端点和f(x)0的点的函数值的大
3、小,最大(小)者为最大(小)值; (4)回归实际问题作答易误警示两个注意(1)注意实际问题中函数定义域的确定(2)在实际问题中,如果函数在区间内只有一个极值点,那么只要根据实际意义判定最大值还是最小值即可,不必再与端点的函数值比较三个防范(1)求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论;另外注意函数最值是个“整体”概念,而极值是个“局部”概念(2)f(x0)0是yf(x)在xx0取极值的既不充分也不必要条件如y|x|在x0处取得极小值,但在x0处不可导;f(x)x3,f(0)0,但x0不是f(x)x3的极值点(3)若yf(x)可导,则f(x0)0是f(x)在xx0
4、处取极值的必要条件基础检测:1若a0,b0,且函数f(x)4x3ax22bx2在x1处有极值,则ab的最大值等于()A2 B3 C6 D 92已知函数f(x)x4x32x2,则f(x)()A有极大值,无极小值 B有极大值,有极小值C有极小值,无极大值 D无极小值,无极大值3已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)的函数关系式为yx381x234,则使该生产厂家获取最大年利润的年产量为()A13万件 B11万件 C9万件 D7万件4函数f(x)x33x21在x_处取得极小值5若函数f(x)在x1处取极值,则a_.典例导悟: 【例1】设f(x)2x3ax2bx1的导数为f(x
5、),若函数yf(x)的图象关于直线x对称,且f(1)0.(1)求实数a,b的值;(2)求函数f(x)的极值【训练1】 (2011安徽)设f(x),其中a为正实数(1)当a时,求f(x)的极值点;(2)若f(x)为R上的单调函数,求a的取值范围来源:学|科|网【例2】已知a为实数,且函数f(x)(x24)(xa) (1)求导函数f(x);(2)若f(1)0,求函数f(x)在2,2上的最大值、最小值来源:【训练2】 函数f(x)x3ax2b的图象在点P(1,0)处的切线与直线3xy0平行(1)求a,b;(2)求函数f(x)在0,t(t0)内的最大值和最小值【例3】统计表明,某种型号的汽车在匀速行驶中,每小时的耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:yx3x8(0x120)已知甲、乙两地相距100千米(1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?