收藏 分享(赏)

玩转函数第8招--函数的对称性.doc

上传人:高**** 文档编号:1400715 上传时间:2024-06-07 格式:DOC 页数:6 大小:328KB
下载 相关 举报
玩转函数第8招--函数的对称性.doc_第1页
第1页 / 共6页
玩转函数第8招--函数的对称性.doc_第2页
第2页 / 共6页
玩转函数第8招--函数的对称性.doc_第3页
第3页 / 共6页
玩转函数第8招--函数的对称性.doc_第4页
第4页 / 共6页
玩转函数第8招--函数的对称性.doc_第5页
第5页 / 共6页
玩转函数第8招--函数的对称性.doc_第6页
第6页 / 共6页
亲,该文档总共6页,全部预览完了,如果喜欢就下载吧!
资源描述

1、玩转函数第八招 焦建新编 第22招:函 数 对 称 性 的 探 究函数的对称性是函数的一个基本性质,对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能更简捷地使问题得到解决,对称关系还充分体现了数学之美。本文通过函数自身的对称性和不同函数之间的对称性这两个方面来探讨函数与对称有关的性质。一.函数自身的对称性探究定理1.函数 y = f (x)的图像关于点A (a ,b)对称的充要条件是 f (x) + f (2ax) = 2b证明:(必要性)设点P(x ,y)是y = f (x)图像上任一点,点P( x ,y)关于点A (a ,b)的对称点P(2ax,2by)也在y = f (x)图像上

2、, 2by = f (2ax)即y + f (2ax)=2b故f (x) + f (2ax) = 2b,必要性得证。(充分性)设点P(x0,y0)是y = f (x)图像上任一点,则y0 = f (x0) f (x) + f (2ax) =2bf (x0) + f (2ax0) =2b,即2by0 = f (2ax0) 。 故点P(2ax0,2by0)也在y = f (x) 图像上,而点P与点P关于点A (a ,b)对称,充分性得征。推论:函数 y = f (x)的图像关于原点O对称的充要条件是f (x) + f (x) = 0定理2. 函数 y = f (x)的图像关于直线x = a对称的充

3、要条件是 f (a +x) = f (ax) 即f (x) = f (2ax) (证明留给大家)推论:函数 y = f (x)的图像关于y轴对称的充要条件是f (x) = f (x)满足条件的函数的图象关于直线对称。如已知二次函数满足条件且方程有等根,则_(答:); 定理3. 若函数y = f (x) 图像同时关于点A (a ,c)和点B (b ,c)成中心对称(ab),则y = f (x)是周期函数,且2| ab|是其一个周期。 若函数y = f (x) 图像同时关于直线x = a 和直线x = b成轴对称 (ab),则y = f (x)是周期函数,且2| ab|是其一个周期。若函数y =

4、f (x)图像既关于点A (a ,c) 成中心对称又关于直线x =b成轴对称(ab),则y = f (x)是周期函数,且4| ab|是其一个周期。的证明留给读者,以下给出的证明:函数y = f (x)图像既关于点A (a ,c) 成中心对称,f (x) + f (2ax) =2c,用2bx代x得:f (2bx) + f 2a(2bx) =2c(*)又函数y = f (x)图像直线x =b成轴对称, f (2bx) = f (x)代入(*)得:f (x) = 2cf 2(ab) + x(*),用2(ab)x代x得f 2 (ab)+ x = 2cf 4(ab) + x代入(*)得:f (x) =

5、f 4(ab) + x,故y = f (x)是周期函数,且4| ab|是其一个周期。二.不同函数对称性的探究定理4. 函数y = f (x)与y = 2bf (2ax)的图像关于点A (a ,b)成中心对称。定理5. 函数y = f (x)与y = f (2ax)的图像关于直线x = a成轴对称。函数y = f (x)与ax = f (ay)的图像关于直线x +y = a成轴对称。函数y = f (x)与xa = f (y + a)的图像关于直线xy = a成轴对称。定理4与定理5中的证明留给读者,现证定理5中的 设点P(x0 ,y0)是y = f (x)图像上任一点,则y0 = f (x0)

6、。记点P( x ,y)关于直线xy = a的轴对称点为P(x1, y1),则x1 = a + y0 , y1 = x0a ,x0 = a + y1 , y0= x1a 代入y0 = f (x0)之中得x1a = f (a + y1) 点P(x1, y1)在函数xa = f (y + a)的图像上。同理可证:函数xa = f (y + a)的图像上任一点关于直线xy = a的轴对称点也在函数y = f (x)的图像上。故定理5中的成立。推论:函数y = f (x)的图像与x = f (y)的图像关于直线x = y 成轴对称。定理6. 函数y = f (x)与y = f (x)的图像关于直线x =

7、 0成轴对称。函数y = f (x)与y = f (x)的图像关于直线y = 0成轴对称。函数y = f (x)与y = f (x)的图像关于原点成中心对称。函数y = f (x) 与y = f (x) 的图像的关系。的图象先保留在轴右方的图象,擦去轴左方的图象,然后作出轴右方的图象关于轴的对称图形得到。函数y = f (x) 与y = f (x)的图像的关系。的图象先保留原来在轴上方的图象,作出轴下方的图象关于轴的对称图形,然后擦去轴下方的图象得到;三.方程曲线的对称性的证明(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称

8、性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=x+a)的对称曲线C2的方程为f(ya,x+a)=0(或f(y+a,x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2ax,2by)=0;(5)若函数y=f(x)对xR时,f(a+x)=f(ax)恒成立,则y=f(x)图像关于直线x=a对称;(6)函数y=f(xa)与y=f(bx)的图像关于直线x=对称;点关于直线的对称点为;曲线关于直线的对称曲线的方程为。特别地,点关于直线的对称点为;曲线关于直线的对称曲线的方程为;点关于直

9、线的对称点为;曲线关于直线的对称曲线的方程为。如己知函数,若的图像是,它关于直线对称图像是关于原点对称的图像为对应的函数解析式是_(答:);曲线关于点的对称曲线的方程为。如若函数与的图象关于点(-2,3)对称,则_(答:)形如的图像是双曲线,其两渐近线分别直线(由分母为零确定)和直线(由分子、分母中的系数确定),对称中心是点。如已知函数图象与关于直线对称,且图象关于点(2,3)对称,则a的值为_(答:2)如(1)作出函数及的图象;(2)若函数是定义在R上的奇函数,则函数的图象关于_对称 (答:轴)提醒:(1)从结论可看出,求对称曲线方程的问题,实质上是利用代入法转化为求点的对称问题;(2)证明

10、函数图像的对称性,即证明图像上任一点关于对称中心(对称轴)的对称点仍在图像上;(3)证明图像与的对称性,需证两方面:证明上任意点关于对称中心(对称轴)的对称点仍在上;证明上任意点关于对称中心(对称轴)的对称点仍在上。如(1)已知函数。求证:函数的图像关于点成中心对称图形;(2)设曲线C的方程是,将C沿轴, 轴正方向分别平行移动单位长度后得曲线。写出曲线的方程(答:);证明曲线C与关于点对称。四.三角函数图像的对称性列表函 数对称中心坐标对称轴方程y = sin x( k, 0 )x = k+/2y = cos x( k+/2 ,0 )x = ky = tan x(k/2 ,0 )无注:上表中k

11、Z五.函数对称性应用举例例1:定义在R上的非常数函数满足:f (10+x)为偶函数,且f (5x) = f (5+x),则f (x)一定是( )(A)是偶函数,也是周期函数(B)是偶函数,但不是周期函数 (C)是奇函数,也是周期函数(D)是奇函数,但不是周期函数解:f (10+x)为偶函数,f (10+x) = f (10x).f (x)有两条对称轴 x = 5与x =10 ,因此f (x)是以10为其一个周期的周期函数, x =0即y轴也是f (x)的对称轴,因此f (x)还是一个偶函数。故选(A)例2:设定义域为R的函数y = f (x)、y = g(x)都有反函数,并且f(x1)和g-1

12、(x2)函数的图像关于直线y = x对称,若g(5) = 1999,那么f(4)=( )。 (A) 1999; (B)2000; (C)2001; (D)2002。 解:y = f(x1)和y = g-1(x2)函数的图像关于直线y = x对称,y = g-1(x2) 反函数是y = f(x1),而y = g-1(x2)的反函数是:y = 2 + g(x), f(x1) = 2 + g(x), 有f(51) = 2 + g(5)=2001故f(4) = 2001,应选(C)例3.设f(x)是定义在R上的偶函数,且f(1+x)= f(1x),当1x0时,f (x) = x,则f (8.6 ) =

13、 _ 解:f(x)是定义在R上的偶函数x = 0是y = f(x)对称轴;又f(1+x)= f(1x) x = 1也是y = f (x) 对称轴。故y = f(x)是以2为周期的周期函数,f (8.6 ) = f (8+0.6 ) = f (0.6 ) = f (0.6 ) = 0.3例4.函数 y = sin (2x + )的图像的一条对称轴的方程是( )(92全国高考理) (A) x = (B) x = (C) x = (D) x =解:函数 y = sin (2x + )的图像的所有对称轴的方程是2x + = k+x = ,显然取k = 1时的对称轴方程是x = 故选(A)例5. 设f(

14、x)是定义在R上的奇函数,且f(x+2)= f(x),当0x1时,f (x) = x,则f (7.5 ) = ( ) (A) 0.5(B)0.5(C) 1.5(D) 1.5解:y = f (x)是定义在R上的奇函数,点(0,0)是其对称中心; 又f (x+2 )= f (x) = f (x),即f (1+ x) = f (1x), 直线x = 1是y = f (x) 对称轴,故y = f (x)是周期为2的周期函数。 f (7.5 ) = f (80.5 ) = f (0.5 ) = f (0.5 ) =0.5 故选(B)六【训练】1.定义在R上的函数y=f(x),在(,)上是增函数,且函数

15、y=f(x+)是偶函数,当x1且时,有 Af(2x1) f(2x2) Bf(2x1)= f(2x2) Cf(2x1) f(2x2) Df(2x1) f(x22)2设是定义在R上的奇函数,且的图象关于直线对称,则=_3把下面不完整的命题补充完整,并使之成为真命题:若函数的图象与的图象关于_对称,则函数=_(注:填上你认为可以成为真命题的一件情形即可,不必考虑所有可能的情形)4、设有三个函数,已知第一个函数是y=f(x),它的反函数是第二个函数,而第三个函数的图象与第二个函数的图象关于直线x+y=0对称,则第三个函数的解析式为( )A 、 y=f(-x) B、 y=-f(-x) C、 y=f(x)

16、 D、 y=-f(x)5、已知f(x)=,则和f()+f()+f()+f()+f()+f()+f()+f()+f()的值等于( )A 、10000 B、 5000 C 、1000 D 、1006、定义在上的函数都有反函数,又与的图象关于直线对称,若,则( ) A、 B、 C、 D、7已知函数是定义在R上的奇函数,函数的图象与函数 的图象关于直线对称,则的值为( )A2B0C1D不能确定8已知函数f(x)定义域为R,则下列命题: yf(x)为偶函数, 则yf(x2 )的图象关于y轴对称. yf(x 2 )为偶函数, 则yf(x)关于直线x2对称. 若函数f(2x1)是偶函数, 则f(2x)的图象关于直线对称. 若f(x2 )f(2x ), 则yf(x)关于直线x2对称. yf( x2 ) 和yf(2x)的图象关于x2对称. 其中正确的命题序号是 ( )A B C D 9已知函数满足关系式,则实数a的值是( )A1 B C D-110设函数的图象关于直线对称,当= ;当 .

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3