1、温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。课后提升作业 一棱柱、棱锥、棱台的结构特征(45分钟70分)一、选择题(每小题5分,共40分)1.下列说法中正确的是()A.棱柱的面中,至少有两个面互相平行B.棱柱中两个互相平行的平面一定是棱柱的底面C.棱柱中一条侧棱的长就是棱柱的高D.棱柱的侧面一定是平行四边形,但它的底面一定不是平行四边形【解析】选A.棱柱的两底面互相平行,故A正确;棱柱的侧面也可能有平行的面(如正方体),故B错;立在一起的一摞书可以看成一个四棱柱,当把这摞书推倾斜时,它的侧棱就不是棱柱的高,故C错;
2、由棱柱的定义知,棱柱的侧面一定是平行四边形,但它的底面可以是平行四边形,也可以是其他多边形,故D错.2.四棱柱有几条侧棱,几个顶点()A.四条侧棱、四个顶点B.八条侧棱、四个顶点C.四条侧棱、八个顶点D.六条侧棱、八个顶点【解析】选C.结合正方体可知,四棱柱有四条侧棱,八个顶点.3.下列说法错误的是()A.多面体至少有四个面B.九棱柱有9条侧棱,9个侧面,侧面为平行四边形C.长方体、正方体都是棱柱D.三棱柱的侧面为三角形【解析】选D.三棱柱的侧面是平行四边形,故D错误.4.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是().ComA.棱柱B.棱台C.由
3、一个棱柱与一个棱锥构成D.不能确定【解析】选A.根据棱柱的结构特征,当倾斜后水槽中的水形成了以左右(或前后)两个侧面为底面的四棱柱.5.(2016郑州高一检测)如图都是正方体的表面展开图,还原成正方体后,其中两个完全一样的是()A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)【解题指南】让其中一个正方形不动,其余各面沿这个正方形的各边折起,进行想象后判断.【解析】选B.在图(2)(3)中,不动,把图形折起,则为对面,为对面,为对面,故图(2)(3)完全一样,而(1)(4)则不同.【补偿训练】下列图形经过折叠可以围成一个棱柱的是()【解析】选D.A,B,C中底面多边形的边数与侧面
4、数不相等.6.若棱台上、下底面的对应边之比为12,则上、下底面的面积之比是()A.12B.14C.21D.41【解析】选B.由棱台的概念知,上、下两底面是相似的多边形,故它们的面积之比等于对应边长之比的平方,故为14.7.(2016温州高一检测)在五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱的对角线的条数共有()A.20条B.15条C.12条D.10条【解析】选D.因为棱柱的侧棱都是平行的,所以过任意不相邻的两条侧棱的截面为一个平行四边形,共可得5个截面,每个平行四边形可得到五棱柱的两条对角线,故共有10条对角线.8.(2015广东高考)若空间中n个不同
5、的点两两距离都相等,则正整数n的取值()A.大于5B.等于5C.至多等于4D.至多等于3【解析】选C.正四面体的四个顶点是两两距离相等的,即空间中n个不同的点两两距离都相等,则正整数n的取值至多等于4.二、填空题(每小题5分,共10分)9.在正方体上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是_.(写出所有正确结论的编号)矩形;不是矩形的平行四边形;有三个面为等腰直角三角形,有一个面为等边三角形的四面体;每个面都是等边三角形的四面体;每个面都是直角三角形的四面体. 【解析】如图:正确,如图四边形A1D1CB为矩形;错误,任意选择4个顶点,若组成一个平面图形,则必为矩形或正
6、方形,如四边形ABCD为正方形,四边形A1BCD1为矩形;正确,如四面体A1ABD;正确,如四面体A1C1BD;正确,如四面体B1ABD;则正确的说法是.答案:10.(2016天津高一检测)一个棱柱有10个顶点,所有的侧棱长的和为60cm,则每条侧棱长为_cm.【解析】因为n棱柱有2n个顶点,又此棱柱有10个顶点,所以它是五棱柱,又棱柱的侧棱都相等,五条棱长的和为60cm,可知每条侧棱长为12cm.答案:12三、解答题(每小题10分,共20分)11.根据下面对几何体结构特征的描述,说出几何体的名称.(1)由8个面围成,其中2个面是互相平行且全等的六边形,其他各面都是平行四边形.(2)由5个面围
7、成,其中一个是正方形,其他各面都是有1个公共顶点的三角形.【解析】(1)根据棱柱的结构特征可知,该几何体为六棱柱.(2)根据棱锥的结构特征可知,该几何体为四棱锥.12.已知三棱柱ABC-ABC,底面是边长为1的正三角形,侧面为全等的矩形且高为8,求一点自A点出发沿着三棱柱的侧面绕行一周后到达A点的最短路线长.【解析】将三棱柱侧面沿侧棱AA剪开,展成平面图形如图,则AA即为所求的最短路线.在RtAA1A中,AA1=3,A1A=8,所以AA=.【延伸探究】本题条件不变,求一点自A点出发沿着三棱柱的侧面绕行两周后到达A点的最短路线长.【解析】将两个相同的题目中的三棱柱的侧面都沿AA剪开,然后展开并拼
8、接成如图所示,则AA即为所求的最短路线.在RtAA1A中,AA1=6,A1A=8,所以AA=10.【能力挑战题】如图,在边长为2a的正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A,B,C重合,重合后记为点P.问:(1)折起后形成的几何体是什么几何体?(2)这个几何体共有几个面,每个面的三角形有何特点?(3)每个面的三角形面积为多少?【解析】(1)如图,折起后的几何体是三棱锥.(2)这个几何体共有4个面,其中DEF为等腰三角形,PEF为等腰直角三角形,DPE和DPF均为直角三角形.(3)SPEF=a2,SDPF=SDPE=2aa=a2,SDEF=S正方形ABCD-SPEF-SDPF-SDPE=(2a)2-a2-a2-a2=a2.关闭Word文档返回原板块