收藏 分享(赏)

《创新设计》2017届高考数学(理)二轮复习(全国通用) 训练专题六 概率与统计 第2讲 WORD版含答案.doc

上传人:高**** 文档编号:129835 上传时间:2024-05-25 格式:DOC 页数:7 大小:97.50KB
下载 相关 举报
《创新设计》2017届高考数学(理)二轮复习(全国通用) 训练专题六 概率与统计 第2讲 WORD版含答案.doc_第1页
第1页 / 共7页
《创新设计》2017届高考数学(理)二轮复习(全国通用) 训练专题六 概率与统计 第2讲 WORD版含答案.doc_第2页
第2页 / 共7页
《创新设计》2017届高考数学(理)二轮复习(全国通用) 训练专题六 概率与统计 第2讲 WORD版含答案.doc_第3页
第3页 / 共7页
《创新设计》2017届高考数学(理)二轮复习(全国通用) 训练专题六 概率与统计 第2讲 WORD版含答案.doc_第4页
第4页 / 共7页
《创新设计》2017届高考数学(理)二轮复习(全国通用) 训练专题六 概率与统计 第2讲 WORD版含答案.doc_第5页
第5页 / 共7页
《创新设计》2017届高考数学(理)二轮复习(全国通用) 训练专题六 概率与统计 第2讲 WORD版含答案.doc_第6页
第6页 / 共7页
《创新设计》2017届高考数学(理)二轮复习(全国通用) 训练专题六 概率与统计 第2讲 WORD版含答案.doc_第7页
第7页 / 共7页
亲,该文档总共7页,全部预览完了,如果喜欢就下载吧!
资源描述

1、一、选择题1.(2014新课标全国)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8 B.0.75 C.0.6 D.0.45解析已知连续两天为优良的概率是0.6,那么在前一天空气质量为优良的前提下,要求随后一天的空气质量为优良的概率,可根据条件概率公式,得P0.8.答案A2.(2015全国卷)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648 B.0.432 C.0.

2、36 D.0.312解析3次投篮投中2次的概率为P(k2)C0.62(10.6),投中3次的概率为P(k3)0.63,所以通过测试的概率PP(k2)P(k3)C0.62(10.6)0.630.648.故选A.答案A3.(2017合肥模拟)从装有除颜色外完全相同的3个白球和m个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为X,已知E(X)3,则D(X)等于()A. B. C. D.解析根据题目条件,每次摸到白球的概率都是p,满足二项分布,则有E(X)np53,解得m2,那么D(X)np(1p)5.答案B4.(2016北京卷)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空

3、盒,每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则()A.乙盒中黑球不多于丙盒中黑球B.乙盒中红球与丙盒中黑球一样多C.乙盒中红球不多于丙盒中红球D.乙盒中黑球与丙盒中红球一样多解析若袋中有两个球,则红球、黑球各一个,若红球放在甲盒,则黑球放在乙盒,丙盒中没有球,此时乙盒中黑球多于丙盒中黑球,乙盒中黑球比丙盒中红球多,故可排除A、D;若袋中有四个球,则红球、黑球各两个,若取出两个红球,则红球一个放在甲盒,余下一个放在乙盒,再取出余下的两个黑球,一个放在甲盒,则余下一个放在丙盒,所以甲盒中一红一

4、黑,乙盒中一个红球,丙盒中一个黑球,此时乙盒中红球比丙盒中红球多,排除C;故选B.答案B5.箱中装有标号为1,2,3,4,5,6且大小相同的6个球.从箱中一次摸出两个球,记下号码并放回,如果两球号码之积是4的倍数,则获奖.则有4人参与摸奖(每人一次),则恰好有3人获奖的概率是()A. B. C. D.解析若摸出的两球中含有4,必获奖,有5种情况;若摸出的两球是2,6,也能获奖.故获奖的情形共6种,获奖的概率为.现有4人参与摸奖,恰有3人获奖的概率是C.答案B二、填空题6.(2016四川卷)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X的均值是

5、_.解析由题可知,在一次试验中,试验成功(即至少有一枚硬币正面向上)的概率为P1,2次独立试验成功次数X满足二项分布XB,则E(X)2.答案7.连续掷一枚均匀的正方体骰子(6个面分别标有1,2,3,4,5,6),现定义数列anSn是其前n项和,则S53的概率是_.解析该试验可看作一个独立重复试验,结果为1发生的概率为,结果为1发生的概率为,S53即5次试验中1发生一次,1发生四次.故其概率为C.答案8.(2017金丽衢十二校联考)有甲、乙、丙三位同学,投篮命中的概率如下表:同学甲乙丙概率0.5aa现请三位同学各投篮一次,设表示命中的次数,若E(),则a_.解析可取值0,1,2,3.P(0)0.

6、5(1a)(1a)0.5(1a)2;P(1)0.5(1a)(1a)20.5a(1a)0.5(1a2);P(2)0.5a220.5a(1a)0.5a(2a);P(3)0.5aa0.5a2.E()P(0)0P(1)1P(2)2P(3)3.即0.5(1a2)a(2a)1.5a2,解得a.答案三、解答题9.(2016全国卷)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:上年度出险次数012345保费0.85aa1.25a1.5a1.75a2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数012345概率0.300.

7、150.200.200.100.05(1)求一续保人本年度的保费高于基本保费的概率;(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(3)求续保人本年度的平均保费与基本保费的比值.解(1)设A表示事件:“一续保人本年度的保费高于基本保费”,则事件A发生当且仅当一年内出险次数大于1,故P(A)0.20.20.10.050.55.(2)设B表示事件:“一续保人本年度的保费比基本保费高出60%”,则事件B发生当且仅当一年内出险次数大于3,故P(B)0.10.050.15.又P(AB)P(B),故P(B|A).因此所求概率为.(3)记续保人本年度的保费为X,则X的分布列为

8、X0.85aa1.25a1.5a1.75a2aP 0.300.150.200.200.100.05E(X)0.85a0.30a0.151.25a0.201.5a0.201.75a0.102a0.051.23a.因此续保人本年度的平均保费与基本保费的比值为1.23.10.设某校新、老校区之间开车单程所需时间为T,T只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:T(分钟)25303540频数(次)20304010(1)求T的分布列与数学期望E(T); (2)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过

9、120分钟的概率.解(1)由统计结果可得T的频率分布为T(分钟)25303540频率0.20.30.40.1以频率估计概率得T的分布列为T25303540P0.20.30.40.1从而E(T)250.2300.3350.4400.132(分钟).(2)设T1,T2分别表示往、返所需时间,T1,T2的取值相互独立,且与T的分布列相同,设事件A表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A对应于“刘教授在路途中的时间不超过70分钟”.法一P(A)P(T1T270)P(T125,T245)P(T130,T240)P(T135,T235)P(T140,T230)0.210.

10、310.40.90.10.50.91.法二P(A)P(T1T270)P(T135,T240)P(T140,T235)P(T140,T240)0.40.10.10.40.10.10.09,故P(A)1P(A)0.91.11.(2016北京丰台区二模)张先生家住H小区,他工作在C科技园区,从家到公司上班的路上有L1,L2两条路线(如图所示),L1路线上有A1,A2,A3三个路口,各路口遇到红灯的概率均为;L2路线上有B1,B2两个路口,各路口遇到红灯的概率依次为,.(1)若走L1路线,求最多遇到1次红灯的概率;(2)若走L2路线,求遇到红灯的次数X的数学期望;(3)按照“遇到红灯的平均次数最少”的要求,请你帮助张先生从上述两条路线中选择一条最好的上班路线,并说明理由.解(1)设“走L1路线最多遇到1次红灯“为事件A,则P(A)CC.所以走L1路线,最多遇到1次红灯的概率为.(2)依题意,X的可能取值为0,1,2.P(X0),P(X1),P(X2).故随机变量X的分布列为X012PE(X)012.(3)设选择L1路线遇到红灯的次数为Y,随机变量Y服从二项分布,即YB,所以E(Y)3.因为E(X)E(Y),所以选择L2路线上班最好.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3