1、9-8-21设抛物线y28x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是()A.B2,2C1,1 D4,4【解析】 Q(2,0),设直线l的方程为yk(x2),代入抛物线方程,消去y整理得k2x2(4k28)x4k20,由(4k28)24k24k264(1k2)0,解得1k1.【答案】 C 2已知P为双曲线C:1上的点,点M满足|1,且0,则当|取得最小值时点P到双曲线C的渐近线的距离为()A. B.C4 D5【解析】 由0,得OMPM,根据勾股定理,求|MP|的最小值可以转化为求|OP|的最小值,当|OP|取得最小值时,点P的位置为双曲线的顶点(3,0)
2、,而双曲线的渐近线为4x3y0,所求的距离d,故选B.【答案】 B 3已知F1,F2分别是双曲线1(a0,b0)的左,右焦点,对于左支上任意一点P都有|PF2|28a|PF1|(a为实半轴长),则此双曲线的离心率e的取值范围是()A(1,) B(2,3C(1,3 D(1,2【解析】 由P是双曲线左支上任意一点及双曲线的定义,得|PF2|2a|PF1|,所以|PF1|4a8a,所以|PF1|2a,|PF2|4a,在PF1F2中,|PF1|PF2|F1F2|,即2a4a2c,所以e3.又e1,所以10得m22,1,即e,而0e11,e10,b0)由已知得a,c2,又a2b2c2,得b21,双曲线C
3、的方程为y21.整理得(13k2)x26kmx3m230.直线与双曲线有两个不同的交点,可得m23k21且k2,设M(x1,y1),N(x2,y2),MN的中点为B(x0,y0),则x1x2,x0,y0kx0m.由题意,ABMN,kAB(k0,m0)整理得3k24m1,将代入,得m24m0,m4.又3k24m10(k0),即m.m的取值范围是(4,). 8已知椭圆C的中心为坐标原点O,一个长轴顶点为(0,2),它的两个短轴顶点和焦点所组成的四边形为正方形,直线l与y轴交于点P(0,m),与椭圆C交于异于椭圆顶点的两点A,B,且2.(1)求椭圆的方程;(2)求m的取值范围【解析】 (1)由题意,知椭圆的焦点在y轴上,设椭圆方程为1(ab0),由题意,知a2,bc,又a2b2c2,则b,所以椭圆方程为1.(2)设A(x1,y1),B(x2,y2),由题意,知直线l的斜率存在,设其方程为ykxm,与椭圆方程联立, (2k2)x22mkxm240,(2mk)24(2k2)(m24)0,又2,即有(x1,my1)2(x2,y2m),所以x12x2.整理,得(9m24)k282m2,又9m240时等式不成立,所以k20,得m20.所以m的取值范围为.