1、 学习目标 1. 通过特殊到一般的情况推导出空间两点间的距离公式2. 掌握空间直角坐标系中两点间的距离公式及推导,并能利用公式求空间中两点的距离. 学习过程 一、课前准备(预习教材P145 P146,找出疑惑之处)1. 平面两点的距离公式?2. 我们知道数轴上的任意一点M都可用对应一个实数表示,建立了平面直角坐标系后,平面上任意一点M都可用对应一对有序实数表示.那么假设我们建立一个空间直角坐标系时,空间中的任意一点是否可用对应的有序实数组表示出来呢?3. 建立空间直角坐标系时,为方便求点的坐标通常怎样选择坐标轴和坐标原点?二、新课导学 学习探究1.空间直角坐标系该如何建立呢?2.建立了空间直角
2、坐标系以后,空间中任意一点M如何用坐标表示呢?33. 3.空间中任意一点与点之间的距离公式.注意:空间两点间距离公式同平面上两点间的距离公式形式上类似;公式中可交换位置;公式的证明充分应用矩形对角线长这一依据.探究:点与坐标原点的距离?如果是定长r,那么表示什么图形? 典型例题例1 求点P1(1, 0, -1)与P2(4, 3, -1)之间的距离变式:求点之间的距离例2 在空间直角坐标系中,已知的顶点分别是.求证:是直角三角形. 动手试试练1. 在轴上,求与两点和等距离的点.练2. 试在平面上求一点,使它到,和各点的距离相等.三、总结提升 学习小结1.两点间的距离公式是比较整齐的形式,要掌握这
3、种形式特点,另外两个点的相对应的坐标之间是相减而不是相加.2.在平面内到定点的距离等于定长的点的集合是圆.与之类似的是,在三维空间中,到定点的距离等于定长的点的集合是以定点为球心,以定长为半径的球. 知识拓展1.空间坐标系的建立,空间中点的坐标的求法.2.平面上两点间的距离公式.3.平面上圆心在原点的圆的方程. 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1空间两点之间的距离( ). A6 B7 C8 D92在轴上找一点,使它与点的距离为,则点为( ). A BC D都不是3设点是点关于面的对称点,则( ). A10 B C D384已知和点,则线段在坐标平面上的射影长度为 .5已知的三点分别为,则边上的中线长为 . 课后作业 1. 已知三角形的顶点为和.试证明A角为钝角. 2. 在河的一侧有一塔,河宽,另侧有点,求点与塔顶的距离.