1、课时作业 12点、直线、平面之间的位置关系1.2019四省八校联考如图,平面PAD平面ABCD,ABCBCD90,PAPDADAB2CD2,H为PB的中点(1)求证:CH平面PAD;(2)求点C到平面PAB的距离解析:(1)证明:取PA的中点E,连接HE,DE,则EH綊AB.又CD綊AB,EH綊CD,四边形CDEH为平行四边形,CHDE,又DE平面PAD,CH平面PAD,CH平面PAD.(2)取AD的中点F,连接PF,FB,AH,则PFB90,PF,BF,PB,AH,SPAB,连接AC,则V三棱锥CPABV三棱锥PABC,设点C到平面PAB的距离为h,h2,h.点C的平面PAB的距离为.2.2
2、019兰州市诊断考试如图,在四棱锥PABCD中,四边形ABCD为平行四边形,PCD为正三角形,BAD30,AD4,AB2,平面PCD平面ABCD,E为PC的中点(1)证明:BEPC;(2)求多面体PABED的体积解析:(1)证明:BD2AB2AD22ABADcosBAD4,BD2,AB2BD2AD2,ABBD,BDCD.平面PCD平面ABCD,平面PCD平面ABCDCD,BD平面PCD,BDPC.PCD为正三角形,E为PC的中点,DEPC,PC平面BDE,BE平面BDE,BEPC.(2)如图,作PFCD,EGCD,F,G为垂足,平面PCD平面ABCD,PF平面ABCD,EG平面ABCD,PCD
3、为正三角形,CD2,PF3,EG,V四棱锥PABCD2234,V三棱锥EBCD22,多面体PABED的体积V43.3.2018江苏卷在平行六面体ABCDA1B1C1D1中,AA1AB,AB1B1C1.求证:(1)AB平面A1B1C;(2)平面ABB1A1平面A1BC.证明:本题主要考查直线与直线、直线与平面以及平面与平面的位置关系,考查空间想象能力和推理论证能力(1)在平行六面体ABCDA1B1C1D1中,ABA1B1.因为AB平面A1B1C,A1B1平面A1B1C,所以AB平面A1B1C.(2)在平行六面体ABCDA1B1C1D1中,四边形ABB1A1为平行四边形又因为AA1AB,所以四边形
4、ABB1A1为菱形,所以AB1A1B.因为AB1B1C1,BCB1C1,所以AB1BC.又因为A1BBCB,A1B平面A1BC,BC平面A1BC,所以AB1平面A1BC,又因为AB1平面ABB1A1,所以平面ABB1A1平面A1BC.42019东北四市联合体模拟(一)如图,等腰梯形ABCD中,ABCD,ADABBC1,CD2,E为CD的中点,将ADE沿AE折到APE的位置(1)证明:AEPB;(2)当四棱锥PABCE的体积最大时,求点C到平面PAB的距离解析:(1)证明:在等腰梯形ABCD中,连接BD,交AE于点O.ABCE,ABCE,四边形ABCE为平行四边形,AEBCADDE,ADE为等边
5、三角形,在等腰梯形ABCD中,CADE,BDBC,BDAE.如图,翻折后可得,OPAE,OBAE,又OP平面POB,OB平面POB,OPOBO,AE平面POB,PB平面POB,AEPB.(2)当四棱锥PABCE的体积最大时,平面PAE平面ABCE.又平面PAE平面ABCEAE,PO平面PAE,POAE,OP平面ABCE.OPOB,PB,APAB1,SPAB ,连接AC,则VPABCOPSABC,设点C到平面PAB的距离为d,VPABCVCPABSPABd,d.52019郑州市第二次质量预测如图,四棱锥PABCD中,底面ABCD是边长为2的菱形,BAD,PAD是等边三角形,F为AD的中点,PDB
6、F.(1)求证:ADPB;(2)若E在线段BC上,且ECBC,能否在棱PC上找到一点G,使平面DEG平面ABCD?若存在,求出三棱锥DCEG的体积;若不存在,请说明理由解析:(1)证明:连接PF,PAD是等边三角形,PFAD.底面ABCD是菱形,BAD,BFAD.又PFBFF,AD平面BFP,又PB平面BFP,ADPB.(2)能在棱PC上找到一点G,使平面DEG平面ABCD.由(1)知ADBF,PDBF,ADPDD,BF平面PAD.又BF平面ABCD,平面ABCD平面PAD,又平面ABCD平面PADAD,且PFAD,PF平面ABCD.连接CF交DE于点H,过H作HGPF交PC于G,GH平面AB
7、CD.又GH平面DEG,平面DEG平面ABCD.ADBC,DFHECH,GHPF,VDCEGVGCDESCDEGHDCCEsinGH.62019北京卷如图,在四棱锥PABCD中,PA平面ABCD,底面ABCD为菱形,E为CD的中点()求证:BD平面PAC;()若ABC60,求证:平面PAB平面PAE;()棱PB上是否存在点F,使得CF平面PAE?说明理由解析:()因为PA平面ABCD,所以PABD.又因为底面ABCD为菱形,所以BDAC.所以BD平面PAC.()因为PA平面ABCD,AE平面ABCD,所以PAAE.因为底面ABCD为菱形,ABC60,且E为CD的中点,所以AECD.所以ABAE.所以AE平面PAB.所以平面PAB平面PAE.()棱PB上存在点F,使得CF平面PAE.取F为PB的中点,取G为PA的中点,连接CF,FG,EG.则FGAB,且FGAB.因为底面ABCD为菱形,且E为CD的中点,所以CEAB,且CEAB.所以FGCE,且FGCE.所以四边形CEGF为平行四边形所以CFEG.因为CF平面PAE,EG平面PAE,所以CF平面PAE.