收藏 分享(赏)

河南省开封市五县联考2020-2021学年高一数学下学期期末考试试题(含解析).doc

上传人:高**** 文档编号:1174610 上传时间:2024-06-05 格式:DOC 页数:18 大小:1.17MB
下载 相关 举报
河南省开封市五县联考2020-2021学年高一数学下学期期末考试试题(含解析).doc_第1页
第1页 / 共18页
河南省开封市五县联考2020-2021学年高一数学下学期期末考试试题(含解析).doc_第2页
第2页 / 共18页
河南省开封市五县联考2020-2021学年高一数学下学期期末考试试题(含解析).doc_第3页
第3页 / 共18页
河南省开封市五县联考2020-2021学年高一数学下学期期末考试试题(含解析).doc_第4页
第4页 / 共18页
河南省开封市五县联考2020-2021学年高一数学下学期期末考试试题(含解析).doc_第5页
第5页 / 共18页
河南省开封市五县联考2020-2021学年高一数学下学期期末考试试题(含解析).doc_第6页
第6页 / 共18页
河南省开封市五县联考2020-2021学年高一数学下学期期末考试试题(含解析).doc_第7页
第7页 / 共18页
河南省开封市五县联考2020-2021学年高一数学下学期期末考试试题(含解析).doc_第8页
第8页 / 共18页
河南省开封市五县联考2020-2021学年高一数学下学期期末考试试题(含解析).doc_第9页
第9页 / 共18页
河南省开封市五县联考2020-2021学年高一数学下学期期末考试试题(含解析).doc_第10页
第10页 / 共18页
河南省开封市五县联考2020-2021学年高一数学下学期期末考试试题(含解析).doc_第11页
第11页 / 共18页
河南省开封市五县联考2020-2021学年高一数学下学期期末考试试题(含解析).doc_第12页
第12页 / 共18页
河南省开封市五县联考2020-2021学年高一数学下学期期末考试试题(含解析).doc_第13页
第13页 / 共18页
河南省开封市五县联考2020-2021学年高一数学下学期期末考试试题(含解析).doc_第14页
第14页 / 共18页
河南省开封市五县联考2020-2021学年高一数学下学期期末考试试题(含解析).doc_第15页
第15页 / 共18页
河南省开封市五县联考2020-2021学年高一数学下学期期末考试试题(含解析).doc_第16页
第16页 / 共18页
河南省开封市五县联考2020-2021学年高一数学下学期期末考试试题(含解析).doc_第17页
第17页 / 共18页
河南省开封市五县联考2020-2021学年高一数学下学期期末考试试题(含解析).doc_第18页
第18页 / 共18页
亲,该文档总共18页,全部预览完了,如果喜欢就下载吧!
资源描述

1、河南省开封市五县联考2020-2021学年高一数学下学期期末考试试题(含解析)一、选择题(共12小题,每小题5分,共60分)1已知点P(tan,sin)在第三象限,则角在()A第一象限B第二象限C第三象限D第四象限2高三(1)班共有56人,学号依次为1,2,3,56,现用系统抽样的办法抽取一个容量为4的样本,已知学号为6,34,48的同学在样本中,那么还有一个同学的学号应为()A18B19C20D213某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()

2、A新农村建设后,种植收入减少B新农村建设后,其他收入增加了一倍以上C新农村建设后,养殖收入增加了一倍D新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4用更相减损术求294和84的最大公约数时,需做减法的次数是()A2B3C4D55在ABC中,AD为BC边上的中线,E为AD的中点,则()ABC+D+6若(0,),且1+cos2+2sin2,则tan()ABC3D77已知ABC的内角A,B,C所对的边分别为a,b,c,若sinA+cosA0,a,b1,则c()A1B2C3D48函数f(x)sin(x+)(xR)(0,|)的部分图象如图所示,如果,且f(x1)f(x2),则f(x1+

3、x2)()ABCD19任取一个三位正整数n,则log2n是一个正整数的概率为()ABCD10如图是求的程序框图,图中空白框中应填入()AABA2+CADA1+11甲、乙两艘轮船都要在某个泊位停靠6小时,假定他们在一昼夜时间内随机到达,试求这两艘船中至少有一艘在停靠泊位时必须等待的概率是()ABCD12给出下列结论:(1)若在第四象限,则2角的终边在第三或第四象限;(2)正切函数在定义域内是单调递增函数;(3)正方体的边长与体积成正相关;(4)抛一枚均匀的硬币4次,则出现正面的次数多于反面次数的概率为其中正确结论的个数是()A0B1C2D3二、填空题(本大题共4小题,每小题5分,共20分)13三

4、进制10212(3)转化为十进制的数是 14与向量(1,1)共线的单位向量是 15已知函数,当x时f(x)有最大值,此时cos 16如图,一栋建筑物AB高(3010)m,在该建筑物的正东方向有一个通信塔CD在它们之间的地面M点(B、M、D三点共线)测得对楼顶A、塔顶C的仰角分别是15和60,在楼顶A处测得对塔顶C的仰角为30,则通信塔CD的高为 m三、解答题(本大题共6小题,满分70分.解答应写出文字说明,证明过程或演算步骤)17在ABC中,角A,B,C所对的边分别是a,b,c,已知2cosC(acosB+bcosA)c(1)求C;(2)若c,ABC的面积为,求ABC的周长18某大学艺术专业4

5、00名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:20,30),30,40),80,90,并整理得到如下频率分布直方图:()从总体的400名学生中随机抽取一人,估计其分数小于70的概率;()已知样本中分数小于40的学生有5人,试估计总体中分数在区间40,50)内的人数;()已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等试估计总体中男生和女生人数的比例19已知向量(,1),(,)(1)求证:;(2)是否存在不为0的实数k和t,使+(t23),k+t,且?如果存在,试确定k与t的关系,如果不存在

6、,请说明理由20已知函数的最小正周期是2(1)求的值;(2)若,且,求21某企业为了参加上海的进博会,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据(xi,yi)(i1,2,6),如表所示:试销单价x/元456789产品销量y/件q8483807568已知yi80(1)求q的值;(2)已知变量x,y具有线性相关关系,求产品销量y(件)关于试销单价x(元)的线性回归方程x+;(3)用表示用正确的线性回归方程得到的与xi对应的产品销量的估计值,当|yi|1时,将销售数据(xi,yi)称为一个“好数据”,现从6个销售数据中任取2个,求抽取的2个

7、销售数据中至少有一个是“好数据”的概率参考公式:,22某学校的平面示意图为如图五边形区域ABCDE,其中三角形区域ABE为生活区,四边形区域BCDE为教学区,AB,BC,CD,DE,EA,BE为学校的主要道路(不考虑宽度)BCDCDE,BAE,DE3BC3CDkm(1)求道路BE的长度;(2)求生活区ABE面积的最大值参考答案一、选择题(共12小题,每小题5分,共60分)1已知点P(tan,sin)在第三象限,则角在()A第一象限B第二象限C第三象限D第四象限解:点P(tan,sin)在第三象限,在第四象限故选:D2高三(1)班共有56人,学号依次为1,2,3,56,现用系统抽样的办法抽取一个

8、容量为4的样本,已知学号为6,34,48的同学在样本中,那么还有一个同学的学号应为()A18B19C20D21解:用系统抽样的办法抽取一个容量为4的样本,也就是说:每隔14名同学抽取1名同学,而抽取的第一位同学的学号为6,所以第二位同学的学号为6+1420故选:C3某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A新农村建设后,种植收入减少B新农村建设后,其他收入增加了一倍以上C新农村建设后,养殖收入增加了一倍D新农村建设后,养殖收入与第三产业收入的

9、总和超过了经济收入的一半解:设建设前经济收入为a,建设后经济收入为2aA项,种植收入37%2a60%a14%a0,故建设后,种植收入增加,故A项错误B项,建设后,其他收入为5%2a10%a,建设前,其他收入为4%a,故10%a4%a2.52,故B项正确C项,建设后,养殖收入为30%2a60%a,建设前,养殖收入为30%a,故60%a30%a2,故C项正确D项,建设后,养殖收入与第三产业收入总和为(30%+28%)2a58%2a,经济收入为2a,故(58%2a)2a58%50%,故D项正确因为是选择不正确的一项,故选:A4用更相减损术求294和84的最大公约数时,需做减法的次数是()A2B3C4

10、D5解:29484210,21084126,1268442,844242,42是294和84的最大公约数因此用更相减损术求294和84的最大公约数时,需做减法的次数是4故选:C5在ABC中,AD为BC边上的中线,E为AD的中点,则()ABC+D+解:在ABC中,AD为BC边上的中线,E为AD的中点,(+),故选:A6若(0,),且1+cos2+2sin2,则tan()ABC3D7解:cos22cos21,sin2+cos21,1+cos2+2sin22cos2+2sin2,解得tan3或故选:C7已知ABC的内角A,B,C所对的边分别为a,b,c,若sinA+cosA0,a,b1,则c()A1

11、B2C3D4解:sinA+cosA0,tanA,A(0,),A,由余弦定理知,a2b2+c22bccosA,71+c22c(),化简得c2+c60,解得c2或3(舍负)故选:B8函数f(x)sin(x+)(xR)(0,|)的部分图象如图所示,如果,且f(x1)f(x2),则f(x1+x2)()ABCD1解:由图知,T2,2,因为函数的图象经过(),0sin(+),所以,所以故选:C9任取一个三位正整数n,则log2n是一个正整数的概率为()ABCD解:任取一个三位正整数n,所有的取法有999100+1900要使log2n是一个正整数需使n2x,xN100n99x7,8,9log2n是一个正整数

12、包含的结果有3个由古典概型的概率公式得log2n是一个正整数的概率为故选:B10如图是求的程序框图,图中空白框中应填入()AABA2+CADA1+解:模拟程序的运行,可得:A,k1;满足条件k2,执行循环体,A,k2;满足条件k2,执行循环体,A,k3;此时,不满足条件k2,退出循环,输出A的值为,观察A的取值规律可知图中空白框中应填入A故选:A11甲、乙两艘轮船都要在某个泊位停靠6小时,假定他们在一昼夜时间内随机到达,试求这两艘船中至少有一艘在停靠泊位时必须等待的概率是()ABCD解:设甲到达的时刻为x,乙到达的时刻为y则所有的基本事件构成的区域这两艘船中至少有一艘在停靠泊位时必须等待包含的

13、基本事件构成的区域A这两艘船中至少有一艘在停靠泊位时必须等待的概率P(A)1故选:A12给出下列结论:(1)若在第四象限,则2角的终边在第三或第四象限;(2)正切函数在定义域内是单调递增函数;(3)正方体的边长与体积成正相关;(4)抛一枚均匀的硬币4次,则出现正面的次数多于反面次数的概率为其中正确结论的个数是()A0B1C2D3解:对于(1)若在第四象限,则2角的终边在第三或第四象限或y轴的负半轴,故(1)错误;(2)正切函数在定义域内不具备单调性,在每一个周期内是单调递增函数,故(2)错误;(3)正方体的边长与体积成正相关,故(3)正确;(4)抛一枚均匀的硬币4次,则出现正面的次数多于反面次

14、数三正一反为4次,四个都是正面的为1次,共5次,基本事件为2416,故概率为,故(4)正确故选:C二、填空题(本大题共4小题,每小题5分,共20分)13三进制10212(3)转化为十进制的数是104解:10212(3)134+232+131+281+18+3+2104故答案为:10414与向量(1,1)共线的单位向量是 (,)或(,)解:根据题意,设要求单位向量为,且k(k,k),则有k2+(k)21,解可得k,故(,)或(,)故答案为:(,)或(,)15已知函数,当x时f(x)有最大值,此时cos解:2sin(x),当x时f(x)有最大值,2k+(kZ),2k+(kZ),coscos(2k+

15、),故答案为:16如图,一栋建筑物AB高(3010)m,在该建筑物的正东方向有一个通信塔CD在它们之间的地面M点(B、M、D三点共线)测得对楼顶A、塔顶C的仰角分别是15和60,在楼顶A处测得对塔顶C的仰角为30,则通信塔CD的高为60m解:设AECD,垂足为E,则在AMC中,AM20,AMC105,C30,AC60+20,CE30+10,CD3010+30+1060,故答案为:60三、解答题(本大题共6小题,满分70分.解答应写出文字说明,证明过程或演算步骤)17在ABC中,角A,B,C所对的边分别是a,b,c,已知2cosC(acosB+bcosA)c(1)求C;(2)若c,ABC的面积为

16、,求ABC的周长解:(1)由已知2cosC(acosB+bcosA)c,正弦定理得:2cosC(sinAcosB+cosAsinB)sinC,即2cosCsinCsinC,0C,sinC0,cosC,C(2)由c,C,ABC的面积为absin,ab6,又由余弦定理c2b2+a22abcosC,可得:7b2+a2ab(a+b)23ab(a+b)218,可得:(a+b)225,解得:a+b5,ABC的周长a+b+c5+18某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:20,30),30,40),80,90

17、,并整理得到如下频率分布直方图:()从总体的400名学生中随机抽取一人,估计其分数小于70的概率;()已知样本中分数小于40的学生有5人,试估计总体中分数在区间40,50)内的人数;()已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等试估计总体中男生和女生人数的比例解:()由频率分布直方图知:分数小于70的频率为:1(0.04+0.02)100.4故从总体的400名学生中随机抽取一人,估计其分数小于70的概率为0.4;()已知样本中分数小于40的学生有5人,故样本中分数小于40的频率为:0.05,则分数在区间40,50)内的频率为:1(0.04+0.02+0.02+

18、0.01)100.050.05,估计总体中分数在区间40,50)内的人数为4000.0520人,()样本中分数不小于70的频率为:0.6,由于样本中分数不小于70的男女生人数相等故分数不小于70的男生的频率为:0.3,由样本中有一半男生的分数不小于70,故男生的频率为:0.6,即女生的频率为:0.4,即总体中男生和女生人数的比例约为:3:219已知向量(,1),(,)(1)求证:;(2)是否存在不为0的实数k和t,使+(t23),k+t,且?如果存在,试确定k与t的关系,如果不存在,请说明理由解:(1)向量(,1),(,),(2)+(t23)(,1+),k+t(,k),如果,则+(1+)(k)

19、0可得t33t+(32)k020已知函数的最小正周期是2(1)求的值;(2)若,且,求解:(1),又f(x)的最小正周期是2,1,(2),21某企业为了参加上海的进博会,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据(xi,yi)(i1,2,6),如表所示:试销单价x/元456789产品销量y/件q8483807568已知yi80(1)求q的值;(2)已知变量x,y具有线性相关关系,求产品销量y(件)关于试销单价x(元)的线性回归方程x+;(3)用表示用正确的线性回归方程得到的与xi对应的产品销量的估计值,当|yi|1时,将销售数据(xi

20、,yi)称为一个“好数据”,现从6个销售数据中任取2个,求抽取的2个销售数据中至少有一个是“好数据”的概率参考公式:,解:(1)由yi80,求得q90;(2),80+46.5106,所求的线性回归方程为4x+106;(3)当x14时,y190;当x25时,y286;当x36时,y382;当x47时,y478;当x58时,y574;当x69时,y670与销售数据对比可知满足|yi|1(i1,2,6)的共有3个“好数据”:(4,90)、(6,83)、(8,75)从6个销售数据中任意抽取2个的所有可能结果有15种,其中2个数据中至少有一个是“好数据”的结果有33+312种,于是从抽得2个数据中至少有一个销售数据中的产品销量不超过80的概率为22某学校的平面示意图为如图五边形区域ABCDE,其中三角形区域ABE为生活区,四边形区域BCDE为教学区,AB,BC,CD,DE,EA,BE为学校的主要道路(不考虑宽度)BCDCDE,BAE,DE3BC3CDkm(1)求道路BE的长度;(2)求生活区ABE面积的最大值解:(1)如图,连接BD,在BCD中,由余弦定理得:,BCCD,又,在RtBDE中,所以(2)设ABE,在ABE中,由正弦定理,得,当,即时,SABE取得最大值为,即生活区ABE面积的最大值为注:第(2)问也可用余弦定理和均值不等式求解

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3