1、课时达标检测(三十一) 数列求和与数列的综合问题一、全员必做题1(2017山东高考)已知xn是各项均为正数的等比数列,且x1x23,x3x22.(1)求数列xn的通项公式;(2)如图,在平面直角坐标系xOy中,依次连结点P1(x1,1),P2(x2,2),Pn1(xn1,n1)得到折线P1P2Pn1,求由该折线与直线y0,xx1,xxn1所围成的区域的面积Tn.解:(1)设数列xn的公比为q,由已知得q0.由题意得所以3q25q20.因为q0,所以q2,x11,因此数列xn的通项公式为xn2n1.(2)过P1,P2,Pn1向x轴作垂线,垂足分别为Q1,Q2,Qn1.由(1)得xn1xn2n2n
2、12n1,记梯形PnPn1Qn1Qn的面积为bn,由题意得bn2n1(2n1)2n2,所以Tnb1b2bn321520721(2n1)2n3(2n1)2n2.又2Tn320521722(2n1)2n2(2n1)2n1.得Tn321(2222n1)(2n1)2n1(2n1)2n1.所以Tn.2(2018泰州调研)对于数列xn,若对任意nN*,都有xn1成立,则称数列xn为“减差数列”设数列an是各项都为正数的等比数列,其前n项和为Sn,且a11,S3.(1)求数列an的通项公式,并判断数列Sn是否为“减差数列”;(2)设bn(2nan)tan,若数列b3,b4,b5,是“减差数列”,求实数t的取
3、值范围解:(1)设数列an的公比为q,因为a11,S3,所以1qq2,即4q24q30,所以(2q1)(2q3)0.因为q0,所以q,所以an,Sn2,所以22Sn1,所以数列Sn是“减差数列”(2)由题设知,bnt2t.由bn1(n3,nN*),得tt2t,即,化简得t(n2)1.又当n3时,t(n2)1恒成立,即t恒成立,所以tmax1.故实数t的取值范围是(1,)3已知二次函数yf(x)的图象经过坐标原点,其导函数为f(x)6x2,数列an的前n项和为Sn,点(n,Sn)(nN*)均在函数yf(x)的图象上(1)求数列an的通项公式;(2)设bn,试求数列bn的前n项和Tn.解:(1)设
4、二次函数f(x)ax2bx(a0),则f(x)2axb.由于f(x)6x2,得a3,b2,所以f(x)3x22x.又因为点(n,Sn)(nN*)均在函数yf(x)的图象上,所以Sn3n22n.当n2时,anSnSn1(3n22n)3(n1)22(n1)6n5.当n1时,a1S1312211615,所以an6n5(nN*)(2)由(1)得bn,故Tn1.二、重点选做题1(2017北京高考)设an和bn是两个等差数列,记cnmaxb1a1n,b2a2n,bnann(n1,2,3,),其中maxx1,x2,xs表示x1,x2,xs这s个数中最大的数(1)若ann,bn2n1,求c1,c2,c3的值,
5、并证明cn是等差数列;(2)证明:或者对任意正数M,存在正整数m,当nm时,M;或者存在正整数m,使得cm,cm1,cm2,是等差数列解:(1)c1b1a1110,c2maxb12a1,b22a2max121,3221,c3maxb13a1,b23a2,b33a3max131,332,5332.当n3时,(bk1nak1)(bknak)(bk1bk)n(ak1ak)2n0,所以bknak关于kN*单调递减所以cnmaxb1a1n,b2a2n,bnannb1a1n1n.所以对任意n1,cn1n,于是cn1cn1,所以cn是等差数列(2)证明:设数列an和bn的公差分别为d1,d2,则bknakb
6、1(k1)d2a1(k1)d1nb1a1n(d2nd1)(k1)所以cn当d10时,取正整数m,则当nm时,nd1d2,因此cnb1a1n.此时,cm,cm1,cm2,是等差数列当d10时,对任意n1,cnb1a1n(n1)maxd2,0b1a1(n1)(maxd2,0a1)此时,c1,c2,c3,cn,是等差数列当d10时,当n时,有nd1d2.所以n(d1)d1a1d2n(d1)d1a1d2|b1d2|.对任意正数M,取正整数mmax,故当nm时,M.2(2018江苏名校联考)如果一个数列从第2项起,每一项与它前一项的差都大于3,则称这个数列为“S型数列”(1)已知数列an满足a14,a2
7、8,anan18n4(n2,nN*),求证:数列an是“S型数列”;(2)已知等比数列an的首项a1与公比q均为正整数,且an为“S型数列”,记bnan,当数列bn不是“S型数列”时,求数列an的通项公式;(3)是否存在一个正项数列cn是“S型数列”,当c29,且对任意大于等于2的自然数n都满足?如果存在,给出数列cn的一个通项公式(不必证明);如果不存在,请说明理由解:(1)an1an8n4,anan18n4.,得an1an18.所以a2n8n,a2n18n4.因此an4n,从而anan143.所以数列an是“S型数列”(2)由题意可知a11,且anan13,因此an单调递增且q2.而(an
8、an1)(an1an2)an1(q1)an2(q1)(q1)(an1an2)0,所以anan1单调递增又bnan,因此bnbn1单调递增,又bn不是“S型数列”,所以存在n0,使得bn0bn013,所以b2b1bn0bn013,即a1(q1)4.又因为a2a13,即a1(q1)3且a1qN*.所以a1(q1)4,从而a14,q2或a12,q3或a11,q5.an2n1或an23n1或an5n1.(3)可取cn(n1)2可验证符合条件,而且cncn1(n1)2n22n13.三、冲刺满分题1(2018如皋月考)已知数列an,bn中,a11,bn,nN*,数列bn的前n项和为Sn.(1)若an2n1
9、,求Sn;(2)是否存在等比数列an,使bn2Sn对任意nN*恒成立?若存在,求出所有满足条件的数列an的通项公式;若不存在,说明理由;(3)若a1a2an,求证:0Sn2.解:(1)当an2n1时,bn.所以,Sn.(2)满足条件的数列an存在且只有两个,其通项公式为an1和an(1)n1.证明:在bn2Sn中,令n1,得b3b1.设anqn1,则bn.由b3b1,得.若q1,则bn0,满足题设条件此时an1和an(1)n1.若q1,则,即q21,矛盾综上,满足条件的数列an存在,且只有两个,一个是an1,另一个是an(1)n1.(3)因1a1a2an,故an0,01,于是01.所以bn0,
10、n1,2,3,所以Snb1b2bn0. 又bn2.故Snb1b2bn222222.所以0Sn2.2(2018扬州中学模拟)若数列an和bn的项数均为n,则将aibi|定义为数列an和bn的距离(1)已知an2n,bn2n1,nN*,求数列an和bn的距离dn.(2)记A为满足递推关系an1的所有数列an的集合,数列bn和cn为A中的两个元素,且项数均为n.若b12,c13,数列bn和cn的距离大于2 017,求n的最小值(3)若存在常数M0,对任意的nN*,恒有aibi|M则称数列an和bn的距离是有界的若an与an1的距离是有界的,求证:a与a的距离是有界的解:(1)dn(2)设a1p,其中
11、p0且p1.由an1,得a2,a3,a4,a5p.所以a1a5,a2a6,因此集合A中的所有数列都具有周期性,且周期为4.数列bn中,b4k32,b4k23,b4k1,b4k(kN*),数列cn中,c4k33,c4k22,c4k1,c4k(kN*),因为bici|bici|,所以项数n越大,数列bn和cn的距离越大因为bici|,而bici|bici|8642 016,|c1b1|1,|c2b2|1,因此,当n3 457时,bici|2 017,当n3 458时,bici|2 018,故n的最小值为3 458.(3)因为an与an1的距离是有界的,所以存在正数M,对任意的nN*,有|an1an|anan1|a2a1|M.|an|anan1an1an2a2a1a1|anan1|an1an2|a2a1|a1|M|a1|.记KM|a1|,则有|aa|(an1an)(an1an)|(|an1|an|)|an1an|2K|an1an|.因此|aa|aa|aa|2KM.故a与a的距离是有界的