收藏 分享(赏)

2017版高考数学(理江苏专用)大二轮总复习与增分策略配套课件:专题五 立体几何与空间向量 第2讲 .pptx

上传人:高**** 文档编号:115077 上传时间:2024-05-25 格式:PPTX 页数:39 大小:1,019.33KB
下载 相关 举报
2017版高考数学(理江苏专用)大二轮总复习与增分策略配套课件:专题五 立体几何与空间向量 第2讲 .pptx_第1页
第1页 / 共39页
2017版高考数学(理江苏专用)大二轮总复习与增分策略配套课件:专题五 立体几何与空间向量 第2讲 .pptx_第2页
第2页 / 共39页
2017版高考数学(理江苏专用)大二轮总复习与增分策略配套课件:专题五 立体几何与空间向量 第2讲 .pptx_第3页
第3页 / 共39页
2017版高考数学(理江苏专用)大二轮总复习与增分策略配套课件:专题五 立体几何与空间向量 第2讲 .pptx_第4页
第4页 / 共39页
2017版高考数学(理江苏专用)大二轮总复习与增分策略配套课件:专题五 立体几何与空间向量 第2讲 .pptx_第5页
第5页 / 共39页
2017版高考数学(理江苏专用)大二轮总复习与增分策略配套课件:专题五 立体几何与空间向量 第2讲 .pptx_第6页
第6页 / 共39页
2017版高考数学(理江苏专用)大二轮总复习与增分策略配套课件:专题五 立体几何与空间向量 第2讲 .pptx_第7页
第7页 / 共39页
2017版高考数学(理江苏专用)大二轮总复习与增分策略配套课件:专题五 立体几何与空间向量 第2讲 .pptx_第8页
第8页 / 共39页
2017版高考数学(理江苏专用)大二轮总复习与增分策略配套课件:专题五 立体几何与空间向量 第2讲 .pptx_第9页
第9页 / 共39页
2017版高考数学(理江苏专用)大二轮总复习与增分策略配套课件:专题五 立体几何与空间向量 第2讲 .pptx_第10页
第10页 / 共39页
2017版高考数学(理江苏专用)大二轮总复习与增分策略配套课件:专题五 立体几何与空间向量 第2讲 .pptx_第11页
第11页 / 共39页
2017版高考数学(理江苏专用)大二轮总复习与增分策略配套课件:专题五 立体几何与空间向量 第2讲 .pptx_第12页
第12页 / 共39页
2017版高考数学(理江苏专用)大二轮总复习与增分策略配套课件:专题五 立体几何与空间向量 第2讲 .pptx_第13页
第13页 / 共39页
2017版高考数学(理江苏专用)大二轮总复习与增分策略配套课件:专题五 立体几何与空间向量 第2讲 .pptx_第14页
第14页 / 共39页
2017版高考数学(理江苏专用)大二轮总复习与增分策略配套课件:专题五 立体几何与空间向量 第2讲 .pptx_第15页
第15页 / 共39页
2017版高考数学(理江苏专用)大二轮总复习与增分策略配套课件:专题五 立体几何与空间向量 第2讲 .pptx_第16页
第16页 / 共39页
2017版高考数学(理江苏专用)大二轮总复习与增分策略配套课件:专题五 立体几何与空间向量 第2讲 .pptx_第17页
第17页 / 共39页
2017版高考数学(理江苏专用)大二轮总复习与增分策略配套课件:专题五 立体几何与空间向量 第2讲 .pptx_第18页
第18页 / 共39页
2017版高考数学(理江苏专用)大二轮总复习与增分策略配套课件:专题五 立体几何与空间向量 第2讲 .pptx_第19页
第19页 / 共39页
2017版高考数学(理江苏专用)大二轮总复习与增分策略配套课件:专题五 立体几何与空间向量 第2讲 .pptx_第20页
第20页 / 共39页
2017版高考数学(理江苏专用)大二轮总复习与增分策略配套课件:专题五 立体几何与空间向量 第2讲 .pptx_第21页
第21页 / 共39页
2017版高考数学(理江苏专用)大二轮总复习与增分策略配套课件:专题五 立体几何与空间向量 第2讲 .pptx_第22页
第22页 / 共39页
亲,该文档总共39页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、第2讲 空间中的平行与垂直专题五 立体几何与空间向量栏目索引 高考真题体验 1 热点分类突破 2 高考押题精练 3 1.(2016课标全国甲),是两个平面,m,n是两条直线,有下列四个命题:如果mn,m,n,那么.如果m,n,那么mn.如果,m,那么m.如果mn,那么m与所成的角和n与所成的角相等.其中正确的命题有_.(填写所有正确命题的编号)解析答案 高考真题体验 12解析 当mn,m,n时,两个平面的位置关系不确定,故错误,经判断知均正确,故正确答案为.2.(2016江苏)如图,在直三棱柱ABCA1B1C1中,D,E 分 别 为 AB,BC 的 中 点,点 F 在 侧 棱 B1B 上,且B

2、1DA1F,A1C1A1B1.求证:(1)直线DE平面A1C1F;证明 由已知,DE为ABC的中位线,DEAC,又由三棱柱的性质可得ACA1C1,DEA1C1,且DE平面A1C1F,A1C1平面A1C1F,DE平面A1C1F.12解析答案(2)平面B1DE平面A1C1F.证明 在直三棱柱ABCA1B1C1中,AA1平面A1B1C1,AA1A1C1,又A1B1A1C1,且A1B1AA1A1,A1C1平面ABB1A1,B1D平面ABB1A1,A1C1B1D,又A1FB1D,且A1FA1C1A1,B1D平面A1C1F,又B1D平面B1DE,平面B1DE平面A1C1F.解析答案 121.以填空题的形式

3、考查,主要利用平面的基本性质及线线、线面和面面的判定与性质定理对命题的真假进行判断,属基础题.2.以解答题的形式考查,主要是对线线、线面与面面平行和垂直关系交汇综合命题,且多以棱柱、棱锥、棱台或其简单组合体为载体进行考查,难度中等.考情考向分析 返回 热点一 空间线面位置关系的判定空间线面位置关系判断的常用方法(1)根据空间线面平行、垂直关系的判定定理和性质定理逐项判断来解决问题;(2)必要时可以借助空间几何模型,如从长方体、四面体等模型中观察线面位置关系,并结合有关定理来进行判断.热点分类突破 例1(1)已知l是直线,、是两个不同的平面,下列命题中的真命题是_.(填所有真命题的序号)若l,l

4、,则;若,l,则l;若l,则l;若l,l,则.解析 答案(2)设,为两个不重合的平面,m,n为两条不重合的直线,给出下列四个命题:若mn,m,n,则n;若mn,m,n,则;若,m,n,nm,则n;若n,m,与相交且不垂直,则n与m一定不垂直.其中,所有真命题的序号是_.解析 思维升华 答案 跟踪演练1 设m,n是两条不同的直线,是两个不同的平面,给出下列四个命题:若mn,m,则n;若m,m,则;若mn,m,则n;若m,m,则.其中真命题的个数为_.2解析 答案 热点二 空间平行、垂直关系的证明空间平行、垂直关系证明的主要思想是转化,即通过判定、性质定理将线线、线面、面面之间的平行、垂直关系相互

5、转化.解析答案 例 2 如图,在四棱锥 PABCD 中,ABDC,ADDC12AB,M 是线段 PA 的中点.(1)求证:DM平面PCB;(2)若ADAB,平面PAC平面PBC,求证:PABC.解析答案 思维升华 跟 踪 演 练 2 如 图,在 四 棱 锥 PABCD 中,ADBC,且BC2AD,ADCD,PBCD,点E在棱PD上,且PE2ED.(1)求证:平面PCD平面PBC;证明 因为ADCD,ADBC,所以CDBC,又PBCD,PBBCB,PB平面PBC,BC平面PBC,所以CD平面PBC,又CD平面PCD,所以平面PCD平面PBC.解析答案(2)求证:PB平面AEC.证明 连结BD交A

6、C于点O,连结OE.解析答案 因为ADBC,所以ADOCBO,所以DOOBADBC12,又PE2ED,所以OEPB,又OE平面AEC,PB平面AEC,所以PB平面AEC.热点三 平面图形的折叠问题平面图形经过翻折成为空间图形后,原有的性质有的发生变化、有的没有发生变化,这些发生变化和没有发生变化的性质是解决问题的关键.一般地,在翻折后还在一个平面上的性质不发生变化,不在同一个平面上的性质发生变化,解决这类问题就是要根据这些变与不变,去研究翻折以后的空间图形中的线面关系和各类几何量的度量值,这是化解翻折问题的主要方法.例3 如图,在边长为4的菱形ABCD中,DAB60,点E,F分别是边CD,CB

7、的中点,ACEFO,沿EF将CEF翻折到PEF,连结PA,PB,PD,得到如图的五棱锥PABFED,且PB 10.(1)求证:BDPA;解析答案 四棱锥 PBFED 的体积 V13SPO133 3 33.思维升华(2)求四棱锥PBFED的体积.解析答案 解 设AOBDH.连结BO,DAB60,ABD为等边三角形,BD4,BH2,HA2 3,HOPO 3,在RtBHO中,BO BH2HO2 7,在PBO中,BO2PO210PB2,POBO.POEF,EFBOO,EF平面BFED,BO平面BFED,PO平面BFED,梯形BFED的面积S12(EFBD)HO3 3,解析答案 跟踪演练3 如图1,在R

8、tABC中,ABC60,BAC90,AD是BC上的高,沿AD将ABC折成60的二面角BADC,如图2.(1)证明:平面ABD平面BCD;解析答案(2)设点E为BC的中点,BD2,求异面直线AE和BD所成角的大小.返回 121.不重合的两条直线m,n分别在不重合的两个平面,内,给出以下四个命题,其中正确的是_.mnm mn m mn 押题依据 空间两条直线、两个平面之间的平行与垂直的判定是立体几何的重点内容,也是高考命题的热点.此类题常与命题的真假性、充分条件和必要条件等知识相交汇,意在考查考生的空间想象能力、逻辑推理能力.解析 押题依据 高考押题精练 答案 2.如图1,在正ABC中,E,F分别是AB,AC边上的点,且BEAF2CF.点P为边BC上的点,将AEF沿EF折起到A1EF的位置,使平面A1EF平面BEFC,连结A1B,A1P,EP,如图2所示.押题依据 解析答案 12返回(1)求证:A1EFP;(2)若BPBE,点K为棱A1F的中点,则在平面A1FP上是否存在过点K的直线与平面A1BE平行,若存在,请给予证明;若不存在,请说明理由.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3