1、典型例题十已知圆与直线相交于、两点,为原点,且,求实数的值分析:设、两点的坐标为、,则由,可得,再利用一元二次方程根与系数的关系求解或因为通过原点的直线的斜率为,由直线与圆的方程构造以为未知数的一元二次方程,由根与系数关系得出的值,从而使问题得以解决解法一:设点、的坐标为、一方面,由,得,即,也即:另一方面,、是方程组的实数解,即、是方程的两个根,又、在直线上,将代入,得将、代入,解得,代入方程,检验成立,解法二:由直线方程可得,代入圆的方程,有,整理,得由于,故可得,是上述方程两根故得,解得经检验可知为所求 典型例题十一例11 求经过点,且与直线和都相切的圆的方程分析:欲确定圆的方程需确定圆
2、心坐标与半径,由于所求圆过定点,故只需确定圆心坐标又圆与两已知直线相切,故圆心必在它们的交角的平分线上解:圆和直线与相切,圆心在这两条直线的交角平分线上,又圆心到两直线和的距离相等两直线交角的平分线方程是或又圆过点,圆心只能在直线上设圆心到直线的距离等于,化简整理得解得:或圆心是,半径为或圆心是,半径为所求圆的方程为或典型例题十二例12 设圆满足:(1)截轴所得弦长为2;(2)被轴分成两段弧,其弧长的比为,在满足条件(1)(2)的所有圆中,求圆心到直线的距离最小的圆的方程分析:要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程满足两个条件的圆有无数个,其圆心的集合可看作动点的轨
3、迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程解法一:设圆心为,半径为则到轴、轴的距离分别为和由题设知:圆截轴所得劣弧所对的圆心角为,故圆截轴所得弦长为又圆截轴所得弦长为2又到直线的距离为当且仅当时取“=”号,此时这时有或又故所求圆的方程为或解法二:同解法一,得将代入上式得:上述方程有实根,故,将代入方程得又由知、同号故所求圆的方程为或说明:本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢?典型例题十三例13 两圆与相交于、两点,求它们的公共弦所在直线的方程分析:首先求、两点的坐标,再用两点式求直线的方程,但是求两圆交点坐标的过程太繁为了避免求交点,可以采用“设而不求”的技巧解:设两圆、的任一交点坐标为,则有:得:、的坐标满足方程方程是过、两点的直线方程又过、两点的直线是唯一的两圆、的公共弦所在直线的方程为说明:上述解法中,巧妙地避开了求、两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲线与方程的概念达到了目标从解题的角度上说,这是一种“设而不求”的技巧,从知识内容的角度上说,还体现了对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识它的应用很广泛教学资源,一网打尽;JB1000,精彩无限教学资源网