1、高考资源网() 您身边的高考专家1.3.2函数的奇偶性课前预习学案一、预习目标:理解函数的奇偶性及其几何意义二、预习内容:函数的奇偶性定义:一般地,对于函数的定义域内的任意一个,都有 ,那么就叫做 函数一般地,对于函数的定义域的任意一个,都有 ,那么就叫做 函数三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容课内探究学案一、学习目标1.理解函数的奇偶性及其几何意义;2.学会运用函数图象理解和研究函数的性质;3.学会判断函数的奇偶性;学习重点:函数的奇偶性及其几何意义 学习难点:判断函数的奇偶性的方法与格式二、学习过程例1判断下列函数是否是偶函数(1)
2、(2)变式训练1(1)、 (2)、 (3)、例2判断下列函数的奇偶性(1) (2) (3) (4)变式训练2 判断函数的奇偶性:三、【当堂检测】1、函数的奇偶性是 ( ) A奇函数 B. 偶函数 C.非奇非偶函数 D.既是奇函数又是偶函数 2、 若函数是偶函数,则是( )A奇函数 B. 偶函数 C.非奇非偶函数 D.既是奇函数又是偶函数 3、若函数是奇函数,且,则必有 ( )A B. C. D.不确定4、函数是R上的偶函数,且在上单调递增,则下列各式成立的是( )A B. C. D.5、已知函数是偶函数,其图像与x轴有四个交点,则方程的所有实数根的和为 ( )A4 B.2 C.1 D.06、函
3、数是_函数.7、若函数为R上的奇函数,那么_.8、如果奇函数在区间3,7上是增函数,且最小值是5,那么在区间-7,-3上的最_值为_.课后练习与提高一、选择题1、函数的奇偶性是 ( )A奇函数 B. 偶函数 C.非奇非偶函数 D.既是奇函数又是偶函数 2、函数是奇函数,图象上有一点为,则图象必过点( )A B. C. D. 二、填空题:3、为R上的偶函数,且当时,则当时,_.4、函数为偶函数,那么的大小关系为_.三、解答题:5、已知函数是定义在R上的不恒为0的函数,且对于任意的,都有 (1)、求的值; (2)、判断函数的奇偶性,并加以证明参考答案例1解:函数不是偶函数,因为它的定义域关于原点不对称函数也不是偶函数,因为它的定义域为,并不关于原点对称变式训练1解:(1)、函数的定义域为R, 所以为奇函数 (2)、函数的定义域为,定义域关于原点不对称,所以为非奇非偶函数 (3)、函数的定义域为-2,2,所以函数既是奇函数又是偶函数 高考资源网()来源:高考资源网版权所有:高考资源网(www.k s 5 ) 版权所有高考资源网