1、_3.1直线的倾斜角与斜率31.1倾斜角与斜率 在平面直角坐标系中,直线l经过点P.问题1:直线l的位置能够确定吗?提示:不能问题2:过点P可以作与l相交的直线多少条?提示:无数条问题3:上述问题中的所有直线有什么区别?提示:倾斜程度不同1.倾斜角的定义:当直线l与x轴相交时,取x轴作为基准,x轴正方向与直线l向上方向之间所成的角叫做直线l的倾斜角如图所示,直线l的倾斜角是APx,直线l的倾斜角是BPx.2倾斜角的范围:直线的倾斜角的取值范围是0180,并规定与x轴平行或重合的直线的倾斜角为0.3倾斜角与直线形状的关系倾斜角00909090180直线对直线的倾斜角的理解(1)倾斜角定义中含有三
2、个条件:x轴正向;直线向上的方向;小于180的非负角(2)从运动变化的观点来看,直线的倾斜角是由x轴按逆时针方向旋转到与直线重合时所成的角(3)倾斜角是一个几何概念,它直观地描述且表现了直线对x轴的倾斜程度(4)平面直角坐标系中的每一条直线都有一个确定的倾斜角,且倾斜程度相同的直线,其倾斜角相等;倾斜程度不同的直线,其倾斜角不相等. 日常生活中,常用坡度(坡度)表示倾斜程度,例如,“进2升3”与“进2升2”比较,前者更陡一些,因为坡度.问题1:对于直线可利用倾斜角描述倾斜程度,可否借助于坡度来描述直线的倾斜程度?提示:可以问题2:由上图中坡度为升高量与水平前进量的比值,那么对于平面直角坐标系中
3、直线的倾斜程度能否如此度量?提示:可以问题3:通过坐标比,你会发现它与倾斜角有何关系?提示:与倾斜角的正切值相等1斜率的定义:一条直线的倾斜角的正切值叫做这条直线的斜率常用小写字母k表示,即ktan_.2斜率公式:经过两点P1(x1,y1),P2(x2,y2)(x1x2)的直线的斜率公式为k.当x1x2时,直线P1P2没有斜率3斜率作用:用实数反映了平面直角坐标系内的直线的倾斜程度1倾斜角与斜率k的关系(1)直线都有倾斜角,但并不是所有的直线都有斜率当倾斜角是90时,直线的斜率不存在,此时,直线垂直于x轴(平行于y轴或与y轴重合)(2)直线的斜率也反映了直线相对于x轴的正方向的倾斜程度当090
4、时,斜率越大,直线的倾斜程度越大;当90180时,斜率越大,直线的倾斜程度也越大2斜率公式(1)直线的斜率与两点的顺序无关,即两点的纵坐标和横坐标在公式中的次序可以同时调换,就是说, 如果分子是y2y1,分母必须是x2x1;反过来,如果分子是y1y2,分母必须是x1x2,即k.(2)用斜率公式时要一看,二用,三求值一看,就是看所给两点的横坐标是否相等,若相等,则直线的斜率不存在,若不相等,则进行第二步;二用,就是将点的坐标代入斜率公式;三求值,就是计算斜率的值,尤其是点的坐标中含有参数时,应用斜率公式时要对参数进行讨论 (1)若直线l的向上方向与y轴的正方向成30角,则直线l的倾斜角为()A3
5、0B60C30或150 D60或120(2)下列说法中,正确的是()A直线的倾斜角为,则此直线的斜率为tan B直线的斜率为tan ,则此直线的倾斜角为C若直线的倾斜角为,则sin 0D任意直线都有倾斜角,且90时,斜率为tan (1)如图,直线l有两种情况,故l的倾斜角为60或120.(2)对于A,当90时,直线的斜率不存在,故不正确;对于B,虽然直线的斜率为tan ,但只有0180时,才是此直线的倾斜角,故不正确;对于C,当直线平行于x轴时,0,sin 0,故C不正确,故选D.(1)D(2)D求直线的倾斜角的方法及两点注意(1)方法:结合图形,利用特殊三角形(如直角三角形)求角(2)两点注
6、意:当直线与x轴平行或重合时,倾斜角为0,当直线与x轴垂直时,倾斜角为90.注意直线倾斜角的取值范围是0180.1直线l经过第二、四象限,则直线l的倾斜角范围是()A(1)已知过两点A(4,y),B(2,3)的直线的倾斜角为135,则y_;(2)过点P(2,m),Q(m,4)的直线的斜率为1,则m的值为_;(3)已知过A(3,1),B(m,2)的直线的斜率为1,则m的值为_(1)直线AB的斜率ktan 1351,又k,由1,得y5.(2)由斜率公式k1,得m1.(3)当m3时,直线AB平行于y轴,斜率不存在当m3时,k1,解得m0.(1)5(2)1(3)0利用斜率公式求直线的斜率应注意的事项(
7、1)运用公式的前提条件是“x1x2”,即直线不与x轴垂直,因为当直线与x轴垂直时,斜率是不存在的;(2)斜率公式与两点P1,P2的先后顺序无关,也就是说公式中的x1与x2,y1与y2可以同时交换位置3(2012河南平顶山高一调研)若直线过点 (1,2),(4,2),则此直线的倾斜角是()A30 B45C60 D90解析:选A设直线的倾斜角为,直线斜率k,tan .又0180,30. 已知实数x,y满足y2x8,且2x3,求的最大值和最小值如图所示,由于点(x,y)满足关系式2xy8,且2x3,可知点P(x,y)在线段AB上移动,并且A,B两点的坐标可分别求得为A(2,4),B(3,2)由于的几
8、何意义是直线OP的斜率,且kOA2,kOB,所以可求得的最大值为2,最小值为.根据题目中代数式的特征,看是否可以写成的形式,若能,则联想其几何意义(即直线的斜率),再利用图形的直观性来分析解决问题4点M(x,y)在函数y2x8的图象上,当x时,求的取值范围解:的几何意义是过M(x,y),N(1,1)两点的直线的斜率点M在函数y2x8的图象上,且x,设该线段为AB且A(2,4),B(5,2)kNA,kNB,.的取值范围为 已知两点A(3,4),B(3,2),过点P(1,0)的直线l与线段AB有公共点,则l的倾斜角的取值范围_;直线l的斜率k的取值范围_如图,由题意可知kPA1,kPB1,则直线l
9、的倾斜角介于直线PB与PA的倾斜角之间,又PB的倾斜角是45,PA的倾斜角是135,直线l的倾斜角的取值范围是45135;要使l与线段AB有公共点,则直线l的斜率k的取值范围是k1或k1.45135k1或k11本题易错误地认为1k1,结合图形考虑,l的倾斜角应介于直线PB与直线PA的倾斜角之间,要特别注意,当l的倾斜角小于90时,有kkPB;当l的倾斜角大于90时,则有kkPA.2.如图,过点P的直线l与直线段AB相交时,因为过点P且与x轴垂直的直线PC的斜率不存在,而PC所在的直线与线段AB不相交,所以满足题意的斜率夹在中间,即kPAkkPB.解决这类问题时,可利用数形结合思想直观地判断直线
10、是夹在中间还是在两边已知直线l过点P(3,4),且与以A(1,0),B(2,1)为端点的线段AB有公共点,求直线l的斜率k的取值范围解:直线PA的斜率kPA1,直线PB的斜率kPB3,要使直线l与线段AB有公共点,k的取值范围为1关于直线的倾斜角和斜率,下列说法正确的是()A任一直线都有倾斜角,都存在斜率B倾斜角为135的直线的斜率为1C若一条直线的倾斜角为,则它的斜率为ktan D直线斜率的取值范围是(,)解析:选D任一直线都有倾斜角,但当倾斜角为90时,斜率不存在所以A、C错误;倾斜角为135的直线的斜率为1,所以B错误;只有D正确2已知经过两点(5,m)和(m,8)的直线的斜率等于1,则
11、m的值是()A5B8C. D7解析:选C由斜率公式可得1,解之得m.3直线l经过原点和(1,1),则它的倾斜角为_解析:kl1,因此倾斜角为135.答案:1354已知三点A(a,2),B(3,7),C(2,9a)在同一条直线上,实数a的值为_解析:A、B、C三点共线,kABkBC,即,a2或.答案:2或5已知A(m,m3),B(2,m1),C(1,4),直线AC的斜率等于直线BC的斜率的3倍,求m的值解:由题意直线AC的斜率存在,即m1.kAC,kBC.3.整理得:m1(m5)(m1),即(m1)(m4)0,m4或m1(舍去)m4.一、选择题1给出下列说法,正确的个数是()若两直线的倾斜角相等
12、,则它们的斜率也一定相等;一条直线的倾斜角为30;倾斜角为0的直线只有一条;直线的倾斜角的集合|0180与直线集合建立了一一对应关系A0 B1C2 D3解析:选A若两直线的倾斜角为90,则它们的斜率不存在,错;直线倾斜角的取值范围是 BC. D(0,3解析:选B过点(1,2)的斜率为非负且最大斜率为此点与原点的连线斜率时,图象不过第四象限二、填空题6已知a0,若平面内三点A(1,a),B(2,a2),C(3,a3)共线,则a_.解析:若平面内三点共线,则kABkBC,即,整理得a22a10,解得a1,或a1(舍去)答案:17如果直线l1的倾斜角是150,l2l1,垂足为B.l1,l2与x轴分别
13、相交于点C,A,l3平分BAC,则l3的倾斜角为_解析:因为直线l1的倾斜角为150,所以BCA30,所以l3的倾斜角为(9030)30.答案:308已知实数x,y满足方程x2y6,当1x3时,的取值范围为_解析:的几何意义是过M(x,y),N(2,1)两点的直线的斜率,因为点M在函数x2y6的图象上,且1x3,所以可设该线段为AB,且A,B,由于kNA,kNB,所以的取值范围是.答案:三、解答题9已知直线l过点A(1,2),B(m,3),求直线l的斜率和倾斜角的取值范围解:设l的斜率为k,倾斜角为,当m1时,斜率k不存在,90,当m1时,k,当m1时,k0,此时为锐角,090,当m1时,k0,此时为钝角,90180.所以(0,180),k(,0)(0,)10已知A(3,3),B(4,2),C(0,2),(1)求直线AB和AC的斜率(2)若点D在线段BC(包括端点)上移动时,求直线AD的斜率的变化范围解:(1)由斜率公式可得直线AB的斜率kAB.直线AC的斜率kAC.故直线AB的斜率为,直线AC的斜率为.(2)如图所示,当D由B运动到C时,直线AD的斜率由kAB增大到kAC,所以直线AD的斜率的变化范围是.