1、第2讲合情推理与演绎推理基础巩固题组(建议用时:40分钟)一、填空题1正弦函数是奇函数,f(x)sin(x21)是正弦函数,因此f(x)sin(x21)是奇函数,以上推理_结论正确;大前提不正确;小前提不正确;全不正确解析f(x)sin(x21)不是正弦函数而是复合函数,所以小前提不正确答案2(2014西安五校联考)观察下式:112;23432;3456752;4567891072,则得出第n个式子的结论:_.解析各等式的左边是第n个自然数到第3n2个连续自然数的和,右边是中间奇数的平方,故得出结论:n(n1)(n2)(3n2)(2n1)2.答案n(n1)(n2)(3n2)(2n1)23若等差
2、数列an的首项为a1,公差为d,前n项的和为Sn,则数列为等差数列,且通项为a1(n1),类似地,请完成下列命题:若各项均为正数的等比数列bn的首项为b1,公比为q,前n项的积为Tn,则_答案数列为等比数列,且通项为b1()n14观察(x2)2x,(x4)4x3,(cos x)sin x,由归纳推理得:若定义在R上的函数f(x)满足f(x)f(x),记g(x)为f(x)的导函数,则g(x)_.解析由已知得偶函数的导函数为奇函数,故g(x)g(x)答案g(x)5(2012江西卷改编)观察下列各式:ab1,a2b23,a3b34,a4b47,a5b511,则a10b10等于_解析从给出的式子特点观
3、察可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,照此规律,则a10b10123.答案1236(2014长春调研)类比“两角和与差的正弦公式”的形式,对于给定的两个函数:S(x)axax,C(x)axax,其中a0,且a1,下面正确的运算公式是_S(xy)S(x)C(y)C(x)S(y);S(xy)S(x)C(y)C(x)S(y);2S(xy)S(x)C(y)C(x)S(y);2S(xy)S(x)C(y)C(x)S(y)解析经验证易知错误依题意,注意到2S(xy)2(axyaxy),S(x)C(y)C(x)S(y)2(axyaxy),因此有2S(xy)S(x
4、)C(y)C(x)S(y);同理有2S(xy)S(x)C(y)C(x)S(y)答案7由代数式的乘法法则类比推导向量的数量积的运算法则:“mnnm”类比得到“abba”;“(mn)tmtnt”类比得到“(ab)cacbc”;“(mn)tm(nt)”类比得到“(ab)ca(bc)”;“t0,mtxtmx”类比得到“p0,apxpax”;“|mn|m|n|”类比得到“|ab|a|b|”;“”类比得到“”以上式子中,类比得到的结论正确的是_解析正确;错误答案8(2014南京一模)给出下列等式:2cos ,2cos ,2cos ,请从中归纳出第n个等式:_.答案2cos 二、解答题9给出下面的数表序列:
5、表1表2表31 13135 4 48 12其中表n(n1,2,3,)有n行,第1行的n个数是1,3,5,2n1,从第2行起,每行中的每个数都等于它肩上的两数之和写出表4,验证表4各行中的数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n(n3)(不要求证明)解表4为1357 4812 1220 32它的第1,2,3,4行中的数的平均数分别是4,8,16,32,它们构成首项为4,公比为2的等比数列将这一结论推广到表n(n3),即表n(n3)各行中的数的平均数按从上到下的顺序构成首项为n,公比为2的等比数列10f(x),先分别求f(0)f(1),f(1)f(2),f(2)f(3),然后归纳
6、猜想一般性结论,并给出证明解f(0)f(1),同理可得:f(1)f(2),f(2)f(3).由此猜想f(x)f(1x).证明:f(x)f(1x).能力提升题组(建议用时:25分钟)一、填空题1(2012江西卷改编)观察下列事实:|x|y|1的不同整数解(x,y)的个数为4,|x|y|2的不同整数解(x,y)的个数为8,|x|y|3的不同整数解(x,y)的个数为12,则|x|y|20的不同整数解(x,y)的个数为_解析由|x|y|1的不同整数解的个数为4,|x|y|2的不同整数解的个数为8,|x|y|3的不同整数解的个数为12,归纳推理得|x|y|n的不同整数解的个数为4n,故|x|y|20的不
7、同整数解的个数为80.答案802观察下列各式918,16412,25916,361620,这些等式反映了自然数间的某种规律,设n表示自然数,用关于n的等式表示为_解析91(12)2124(11),164(22)2224(21),259(32)2324(41),3616(42)2424(51),一般地,有(n2)2n24(n1)(nN*)答案(n2)2n24(n1)(nN*)3(2013湖北卷)在平面直角坐标系中,若点P(x,y)的坐标x,y均为整数,则称点P为格点若一个多边形的顶点全是格点,则称该多边形为格点多边形格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L.例如图中AB
8、C是格点三角形,对应的S1,N0,L4.(1)图中格点四边形DEFG对应的S,N,L分别是_;(2)已知格点多边形的面积可表示为SaNbLc,其中a,b,c为常数若某格点多边形对应的N71,L18,则S_(用数值作答)解析(1)四边形DEFG是一个直角梯形,观察图形可知:S(2)3,N1,L6.(2)由(1)知,S四边形DEFGa6bc3.SABC4bc1.在平面直角坐标系中,取一“田”字型四边形,构成边长为2的正方形,该正方形中S4,N1,L8.则Sa8bc4.联立解得a1,b.c1.SNL1,若某格点多边形对应的N71,L18,则S7118179.答案(1)3,1,6(2)79二、解答题4
9、(2012福建卷)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:sin213cos217sin 13cos 17;sin215cos215sin 15cos 15;sin218cos212sin 18cos 12;sin2(18)cos248sin(18)cos 48;sin2(25)cos255sin(25)cos 55.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论解(1)选择式,计算如下:sin215cos215sin 15cos 151sin 301.(2)三角恒等式为sin2cos2(30)sin cos(30).证明如下:sin2cos2(30)sin cos(30)sin2(cos 30cos sin 30sin )2sin (cos 30cos sin 30sin )sin2cos2sin cos sin2sin cos sin2sin2cos2.