1、第5讲独立性、二项分布及其应用基础巩固题组(建议用时:40分钟)一、填空题1设随机变量XB,则P(X3)的值是_解析P(X3)C33.答案2甲、乙两人同时报考某一所大学,甲被录取的概率为0.6,乙被录取的概率为0.7,两人是否被录取互不影响,则其中至少有一人被录取的概率为_解析由题意知,甲、乙都不被录取的概率为(10.6)(10.7)0.12.至少有一人被录取的概率为10.120.88.答案0.883(2014湖州调研)国庆节放假,甲去北京旅游的概率为,乙、丙去北京旅游的概率分别为,.假定三人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为_解析因甲、乙、丙去北京旅游的概率分
2、别为,.因此,他们不去北京旅游的概率分别为,至少有1人去北京旅游的概率为P1.答案4甲、乙两人独立地对同一目标各射击一次,命中率分别为0.6和0.5,现已知目标被击中,则它是被甲击中的概率为_解析设目标被击中为事件B,目标被甲击中为事件A,则由P(B)0.60.50.40.50.60.50.8,又因为AB,所以P(AB)P(A)0.6,得P(A|B)0.75.答案0.755位于坐标原点的一个质点P按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是.质点P移动五次后位于点(2,3)的概率是_解析由于质点每次移动一个单位,移动的方向为向上或向右,移动五次后位
3、于点(2,3),所以质点P必须向右移动两次,向上移动三次,故其概率为C32C5C5.答案6某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为,则该队员每次罚球的命中率为_解析设该队员每次罚球的命中率为p(0p1),则依题意有1p2,又0p0.9,故该线路需要增加班次能力提升题组(建议用时:25分钟)一、填空题1. 一个电路如图所示,A、B、C、D、E、F为6个开关,其闭合的概率都是,且是相互独立的,则灯亮的概率是_解析设A与B中至少有一个不闭合的事件为T,E与F至少有一个不闭合的事件为R,则P(T)P(R)1,所以灯亮的概率P1P(T)P(R)P()P().答案2口袋里
4、放有大小相等的两个红球和一个白球,有放回地每次摸取一个球,定义数列an:an如果Sn为数列an的前n项和,那么S73的概率为_(不必化简)解析S73即为7次摸球中,有5次摸到白球,2次摸到红球,又摸到红球的概率为,摸到白球的概率为.故所求概率为PC25.答案C253将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落小球在下落的过程中,将3次遇到黑色障碍物,最后落入A袋或B袋中已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是,则小球落入A袋中的概率为_解析记“小球落入A袋中”为事件A,“小球落入B袋中”为事件B,则事件A的对立事件为B,若小球落入B袋中,则小球必须一直向
5、左落下或一直向右落下,故P(B)33,从而P(A)1P(B)1.答案二、解答题4(2013山东卷)甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束除第五局甲队获胜的概率是外,其余每局比赛甲队获胜的概率都是.假设各局比赛结果相互独立(1)分别求甲队以30,31,32胜利的概率(2)若比赛结果为30或31,则胜利方得3分,对方得0分;若比赛结果为32,则胜利方得2分、对方得1分求乙队得分X的分布列及数学期望解(1)记“甲队以30胜利”为事件A1,“甲队以31胜利”为事件A2,“甲队以32胜利”为事件A3,由题意知,各局比赛结果相互独立,故P(A1)3,P(A2)C2,P(A3)C22.所以,甲队以30胜利,以31胜利的概率都为,以32胜利的概率为.(2)设“乙队以32胜利”为事件A4,由题意知,各局比赛结果相互独立,所以P(A4)C22.由题意知,随机变量X的所有可能的取值为0,1,2,3,根据事件的互斥性得P(X0)P(A1A2)P(A1)P(A2),又P(X1)P(A3),P(X2)P(A4),P(X3)1P(X0)P(X1)P(X2),X的分布列为X0123PE(X)0123.