1、第2讲电磁感应问题真题再现(2019高考江苏卷)如图所示,匀强磁场中有一个用软导线制成的单匝闭合线圈,线圈平面与磁场垂直已知线圈的面积S0.3 m2、电阻R0.6 ,磁场的磁感应强度B0.2 T现同时向两侧拉动线圈,线圈的两边在t0.5 s时间内合到一起求线圈在上述过程中(1)感应电动势的平均值E;(2)感应电流的平均值I,并在图中标出电流方向;(3)通过导线横截面的电荷量q.解析:(1)感应电动势的平均值E磁通量的变化BS解得E,代入数据得E0.12 V.(2)平均电流I代入数据得I0.2 A(电流方向见图).(3)电荷量qIt代入数据得q0.1 C. 答案:(1)0.12 V(2)0.2
2、A电流方向见解析图(3)0.1 C考情分析命题研究对近几年高考试题分析可看出,该部分知识的考查不仅是高考必考点,而且考查呈现多样性,不仅在选择题中,对基本内容的考查如闭合电路欧姆定律结合电路问题、楞次定律、法拉第电磁感应定律、安培定则、感应电动势等知识考查较多,以导体棒运动为背景,综合应用电路的相关知识、牛顿运动定律和能量守恒定律以计算题形式作为压轴题;这类问题既要用到电磁感应的知识,又要结合数学知识求解,对考生运用数学知识解决物理问题的能力要求较高感应电动势的求解【高分快攻】求解感应电动势的四种常见情景表达式EnEBLvsin EBL2ENBSsin (t0)情景图研究对象回路(不一定闭合)
3、一段直导线(或等效成直导线)绕一端转动的一段导体棒绕与B垂直的轴转动的导线框意义一般求平均感应电动势,当t0时求的是瞬时感应电动势一般求瞬时感应电动势,当v为平均速度时求的是平均感应 电 动 势用平均值法求瞬时感应电动势求瞬时感应电动势适用条件所有磁场(匀强磁场定量计算、非匀强磁场定性分析)匀强磁场匀强磁场匀强磁场【典题例析】 (多选)(2018高考全国卷)如图(a),在同一平面内固定有一长直导线PQ和一导线框R,R在PQ的右侧导线PQ中通有正弦交流电i,i的变化如图(b)所示,规定从Q到P为电流正方向导线框R中的感应电动势()A在t时为零B在t时改变方向C在t时最大,且沿顺时针方向DtT时最
4、大,且沿顺时针方向解析因通电导线的磁感应强度大小正比于电流的大小,故导线框R中磁感应强度与时间的变化关系类似于题图(b),感应电动势正比于磁感应强度的变化率,即题图(b)中的切线斜率,斜率的正负反映电动势的方向,斜率的绝对值反映电动势的大小由题图(b)可知,电流为零时,电动势最大,电流最大时电动势为零,A正确,B错误;再由楞次定律可判断在一个周期内,内电动势的方向沿顺时针,时刻最大,C正确;其余时间段电动势沿逆时针方向,D错误答案AC【题组突破】角度1感应电流的方向判断楞次定律的应用1(2018高考全国卷)如图,在同一水平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域,区域宽度均为
5、l,磁感应强度大小相等、方向交替向上向下一边长为l的正方形金属线框在导轨上向左匀速运动线框中感应电流i随时间t变化的正确图线可能是()解析:选D.设线框运动的速度为v,则线框向左匀速运动第一个的时间内,线框切割磁感线运动产生的电动势为E2Bdv(d为导轨间距),电流i,回路中电流方向为顺时针;第二个的时间内,线框切割磁感线运动产生的电动势为零,电流为零;第三个的时间内,线框切割磁感线运动产生的电动势为E2Bdv,电流i,回路中电流方向为逆时针,所以D正确角度2感应电动势的计算法拉第电磁感应定律的应用2(2019南通质检)如图,直角三角形金属框abc放置在匀强磁场中,磁感应强度大小为B,方向平行
6、于ab边向上当金属框绕ab边以角速度逆时针转动时,a、b、c三点的电势分别为Ua、Ub、Uc.已知bc边的长度为l.下列判断正确的是()AUaUc,金属框中无电流BUb Uc,金属框中电流方向沿abcaCUbcBl2,金属框中无电流DUbcBl2,金属框中电流方向沿acba解析:选C.金属框abc平面与磁场平行,转动过程中磁通量始终为零,所以无感应电流产生,选项B、D错误;转动过程中bc边和ac边均切割磁感线,产生感应电动势,由右手定则判断UaUc,UbUc,选项A错误;由转动切割产生感应电动势的公式得UbcBl2,选项C正确角度3电磁感应中的图象问题3(多选)(2019高考全国卷)如图,方向
7、竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab、cd静止在导轨上t0时,棒ab以初速度v0向右滑动运动过程中,ab、cd始终与导轨垂直并接触良好,两者速度分别用v1、v2表示,回路中的电流用I表示下列图象中可能正确的是()解析:选AC.棒ab以初速度v0向右滑动,切割磁感线产生感应电动势,使整个回路中产生感应电流,判断可知棒ab受到方向与v0方向相反的安培力的作用而做变减速运动,棒cd受到方向与v0方向相同的安培力的作用而做变加速运动,它们之间的速度差vv1v2逐渐减小,整个系统产生的感应电动势逐渐减小,回路中感应电流逐渐减小,最后变为零,即最终棒ab
8、和棒cd的速度相同,v1v2,两相同的光滑导体棒ab、cd组成的系统在足够长的平行金属导轨上运动时不受外力作用,由动量守恒定律有mv0mv1mv2,解得v1v2,选项A、C均正确,B、D均错误命题角度解决方法易错辨析感应电流的方向判断安培定则、楞次定律明确电源内部电流方向及正极感应电动势的计算法拉第电磁感应定律、右手定则明确是感生电动势还是动生电动势,是导体转动切割还是平动切割磁感线磁体与导体的相对运动分析楞次定律、左手定则常用楞次定律的一些推论如“来拒去留”“增缩减扩”等快速判断图象问题分析楞次定律、法拉第电磁感应定律感应电动势或电流的方向判断要弄清楚,大小变化趋势及最大值应计算准确安培力的
9、应用【高分快攻】1解答此类问题首先要分清左手定则、右手定则、安培定则比较项目左手定则右手定则安培定则应用磁场对运动电荷、电流作用力方向的判断对因导体切割磁感线而产生的感应电流方向的判断对电流产生磁场方向的判断涉及方向的物理量磁场方向、电流(电荷运动)方向,安培力(洛伦兹力)方向磁场方向、导体切割磁感线的运动方向、感应电动势的方向电流方向、磁场方向各物理量方向间的关系图例因果关系电流力运动电流电流磁场应用实例电动机发电机电流的磁效应2.电磁感应中动力学问题的解题思路(1)找准主动运动者,用法拉第电磁感应定律和楞次定律求解感应电动势的大小和方向(2)根据等效电路图,求解回路中电流的大小及方向(3)
10、分析安培力对导体棒运动速度、加速度的影响,从而推理得出对电路中的电流有什么影响,最后定性分析导体棒的最终运动情况(4)列牛顿第二定律或平衡方程求解3能量转化问题的分析:先电后力再能量【典题例析】 (2019高考天津卷)如图所示,固定在水平面上间距为l的两条平行光滑金属导轨,垂直于导轨放置的两根金属棒MN和PQ长度也为l、电阻均为R,两棒与导轨始终接触良好MN两端通过开关S与电阻为R的单匝金属线圈相连,线圈内存在竖直向下均匀增加的磁场,磁通量变化率为常量k.图中虚线右侧有垂直于导轨平面向下的匀强磁场,磁感应强度大小为B.PQ的质量为m,金属导轨足够长、电阻忽略不计(1)闭合S,若使PQ保持静止,
11、需在其上加多大的水平恒力F,并指出其方向;(2)断开S,PQ在上述恒力作用下,由静止开始到速度大小为v的加速过程中流过PQ的电荷量为q,求该过程安培力做的功W.解析(1)设线圈中的感应电动势为E,由法拉第电磁感应定律E,则Ek设PQ与MN并联的电阻为R并,有R并闭合S时,设线圈中的电流为I,根据闭合电路欧姆定律得I设PQ中的电流为IPQ,有IPQI设PQ受到的安培力为F安,有F安BIPQl保持PQ静止,由受力平衡,有FF安联立式得F方向水平向右(2)设PQ由静止开始到速度大小为v的加速过程中,PQ运动的位移为x,所用时间为t,回路中的磁通量变化量为 ,平均感应电动势为,有其中Blx设PQ中的平
12、均电流为,有根据电流的定义得由动能定理,有FxWmv20联立式得Wmv2kq.答案见解析【题组突破】角度1安培力作用下的运动分析1(2017高考江苏卷)如图所示,两条相距d的平行金属导轨位于同一水平面内,其右端接一阻值为R的电阻质量为m的金属杆静置在导轨上,其左侧的矩形匀强磁场区域MNPQ的磁感应强度大小为B、方向竖直向下当该磁场区域以速度v0匀速地向右扫过金属杆后,金属杆的速度变为v.导轨和金属杆的电阻不计,导轨光滑且足够长,杆在运动过程中始终与导轨垂直且两端与导轨保持良好接触求: (1)MN刚扫过金属杆时,杆中感应电流的大小I;(2)MN刚扫过金属杆时,杆的加速度大小a;(3)PQ刚要离开
13、金属杆时,感应电流的功率P.解析:(1)感应电动势EBdv0感应电流I解得I.(2)安培力FBId牛顿第二定律Fma解得a.(3)金属杆切割磁感线的速度vv0v,则感应电动势EBd(v0v)电功率P解得P.答案:见解析角度2安培力作用下的功能关系2(2017高考北京卷)发电机和电动机具有装置上的类似性,源于它们机理上的类似性直流发电机和直流电动机的工作原理可以简化为如图1、图2所示的情景在竖直向下的磁感应强度为B的匀强磁场中,两根光滑平行金属轨道MN、PQ固定在水平面内,相距为L,电阻不计电阻为R的金属导体棒ab垂直于MN、PQ放在轨道上,与轨道接触良好,以速度v(v平行于MN)向右做匀速运动
14、图1轨道端点MP间接有阻值为r的电阻,导体棒ab受到水平向右的外力作用图2轨道端点MP间接有直流电源,导体棒ab通过滑轮匀速提升重物,电路中的电流为I.(1)求在t时间内,图1“发电机”产生的电能和图2“电动机”输出的机械能(2)从微观角度看,导体棒ab中的自由电荷所受洛伦兹力在上述能量转化中起着重要作用为了方便,可认为导体棒中的自由电荷为正电荷a请在图3(图1的导体棒ab)、图4(图2的导体棒ab)中,分别画出自由电荷所受洛伦兹力的示意图b我们知道,洛伦兹力对运动电荷不做功那么,导体棒ab中的自由电荷所受洛伦兹力是如何在能量转化过程中起到作用的呢?请以图2“电动机”为例,通过计算分析说明解析
15、:(1)题图1中,电路中的电流I1棒ab受到的安培力F1BI1L在t时间内,“发电机”产生的电能等于棒ab克服安培力做的功E电F1vt题图2中,棒ab受到的安培力F2BIL在t时间内,“电动机”输出的机械能等于安培力对棒ab做的功E机F2vtBILvt.(2)a.如图甲、图乙所示b设自由电荷的电荷量为q,沿导体棒定向移动的速率为u.如图乙所示,沿棒方向的洛伦兹力f1qvB,做负功W1f1utqvBut垂直棒方向的洛伦兹力f2quB,做正功W2f2vtquBvt所以W1W2,即导体棒中一个自由电荷所受的洛伦兹力做功为零f1做负功,阻碍自由电荷的定向移动,宏观上表现为“反电动势”,消耗电源的电能;
16、f2做正功,宏观上表现为安培力做正功,使机械能增加大量自由电荷所受洛伦兹力做功的宏观表现是将电能转化为等量的机械能;在此过程中洛伦兹力通过两个分力做功起到“传递”能量的作用答案:见解析命题角度解决方法易错辨析安培力的计算安培力公式公式FBIL中要求垂直关系,否则容易出错;并且注意安培力的变化是否均匀,否则不能直接利用公式计算安培力作用的动力学分析受力平衡若运动为加速度a逐渐减小的加速运动,则最大速度出现在a0时即受力平衡时安培力作用下的功能关系安培力做功改变内能、动能定理、能量守恒定律安培力做多少功,电路就产生多少电能;再结合能量守恒,分析动能的变化情况电磁感应中的电路综合问题【高分快攻】解决
17、电磁感应中电路问题的思路1“源”的分析:用法拉第电磁感应定律算出E的大小,用楞次定律或右手定则确定感应电动势的方向(感应电流方向是电源内部电流的方向),从而确定电源正负极,明确内阻r.2“路”的分析:根据“等效电源”和电路中其他各元件的连接方式画出等效电路3根据EBLv或En,结合闭合电路欧姆定律、串并联电路知识和电功率、焦耳定律等关系式联立求解【典题例析】 如图所示,半径为l的金属圆环水平放置,圆心处及圆环边缘通过导线分别与两条平行的倾斜金属轨道相连圆环区域内分布着磁感应强度为B,方向竖直向下的匀强磁场,圆环上放置一金属棒a,一端在圆心处,另一端恰好搭在圆环上,可绕圆心转动倾斜轨道部分处于垂
18、直轨道平面向下的匀强磁场中,磁感应强度大小也为B,金属棒b放置在倾斜平行导轨上,其长度与导轨间距均为2l.当棒a绕圆心以角速度顺时针(俯视)匀速旋转时,棒b保持静止已知棒b与轨道间的动摩擦因数为0.5,可认为最大静摩擦力等于滑动摩擦力;棒b的质量为m,棒a、b的电阻分别为R、2R,其余电阻不计;斜面倾角为37,sin 370.6,cos 370.8,重力加速度为g,求:(1)金属棒b两端的电压;(2)为保持b棒始终静止,棒a旋转的角速度大小的范围解析(1)金属棒切割磁感线产生的感应电动势为EBlv金属棒切割磁感线的平均速度v金属棒b两端的电压UE联立解得UBl2(2)电路中的电流I棒b受到的安
19、培力F安BI2l由解得F安为保持b棒始终静止,棒a旋转的角速度最小为1,最大为2,mgsin mgcos mgsin mgcos 解得.答案(1)Bl2(2)【题组突破】角度1感应电荷量的计算1(多选)(2019盐城高三模拟)如图甲所示,abcd是位于竖直平面内的正方形闭合金属线框,在金属线框的下方有一磁感应强度大小为B的匀强磁场区域,MN和MN是匀强磁场区域的水平边界,两边界间的宽度为s,并与线框的bc边平行,磁场方向与线框平面垂直现让金属线框由距MN的某一高度从静止开始下落,图乙是金属线框由开始下落到完全穿过匀强磁场区域的vt图象(其中OA、BC、DE相互平行)已知正方形金属线框的边长为L
20、(L,所以C正确;由于q,D正确角度2含容电路的分析2如图,两条平行导轨所在平面与水平地面间的夹角为,间距为L.导轨上端接有一平行板电容器,电容为C.导轨处于匀强磁场中,磁感应强度大小为B,方向垂直于导轨平面在导轨上放置一质量为m的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触已知金属棒与导轨之间的动摩擦因数为,重力加速度大小为g.忽略所有电阻让金属棒从导轨上端由静止开始下滑,求:(1)电容器极板上积累的电荷量与金属棒速度大小的关系;(2)金属棒的速度大小随时间变化的关系解析:(1)设金属棒下滑的速度大小为v,则感应电动势为EBLv平行板电容器两极板之间的电势差为UE设此时电容
21、器极板上积累的电荷量为Q,按定义有C联立式得QCBLv.(2)设金属棒的速度大小为v时经历的时间为t,通过金属棒的电流为i.金属棒受到的磁场的作用力方向沿导轨向上,大小为F安BLi设在时间间隔(t,tt)内流经金属棒的电荷量为Q,据定义有iQ也是平行板电容器两极板在时间间隔(t,tt)内增加的电荷量由式得:QCBLv式中,v为金属棒的速度变化量据定义有a金属棒所受到的摩擦力方向斜向上,大小为FfFN式中,FN是金属棒对导轨的正压力的大小,有FNmgcos 金属棒在时刻t的加速度方向沿斜面向下,设其大小为a,根据牛顿第二定律有mgsin F安Ffma联立式得ag由式及题设可知,金属棒做初速度为零
22、的匀加速运动t时刻金属棒的速度大小为vgt.答案:(1)QCBLv(2)vgt角度3电磁感应中的电路综合问题3(多选)(2018高考江苏卷)如图所示,竖直放置的“”形光滑导轨宽为L,矩形匀强磁场、的高和间距均为d,磁感应强度为B.质量为m的水平金属杆由静止释放,进入磁场和时的速度相等金属杆在导轨间的电阻为R,与导轨接触良好,其余电阻不计,重力加速度为g.金属杆()A刚进入磁场时加速度方向竖直向下B穿过磁场的时间大于在两磁场之间的运动时间C穿过两磁场产生的总热量为4mgdD释放时距磁场上边界的高度h可能小于解析:选BC.根据题述,由金属杆进入磁场和进入磁场时速度相等可知,金属杆在磁场中做减速运动
23、,所以金属杆刚进入磁场时加速度方向竖直向上,选项A错误;由于金属杆进入磁场后做加速度逐渐减小的减速运动,而在两磁场之间做匀加速运动,所以穿过磁场的时间大于在两磁场之间的运动时间,选项B正确;根据能量守恒定律,金属杆从刚进入磁场到刚进入磁场过程动能变化量为0,重力做功为2mgd,则金属杆穿过磁场产生的热量Q12mgd,而金属杆在两磁场区域的运动情况相同,产生的热量相等,所以金属杆穿过两磁场产生的总热量为22mgd4mgd,选项C正确;金属杆刚进入磁场时的速度v,进入磁场时产生的感应电动势EBLv,感应电流I,所受安培力FBIL,由于金属杆刚进入磁场时加速度方向竖直向上,所以安培力大于重力,即Fm
24、g,联立解得h,选项D错误求电荷量的三种方法(1)qIt(式中I为回路中的恒定电流,t为时间)由于导体棒匀速切割磁感线产生感应电动势而使得闭合回路中的电流恒定,根据电流定义式可知qIt.闭合线圈中磁通量均匀增大或减小且回路中电阻保持不变,则电路中的电流I恒定,t时间内通过线圈横截面的电荷量qIt.(2)qn(其中R为回路电阻,为穿过闭合回路的磁通量变化量)闭合回路中的电阻R不变,并且只有磁通量变化为电路提供电动势从表面来看,通过回路的磁通量与时间无关,但与时间有关,随时间而变化(3)qCBLv(式中C为电容器的电容,B为匀强磁场的磁感应强度,L为导体棒切割磁感线的长度,v为导体棒切割速度的变化
25、量)在匀强磁场中,电容器接在切割磁感线的导体棒两端,不计一切电阻,电容器两极板间电压等于导体棒切割磁感线产生的电动势E,通过电容器的电流I,又EBLv,则UBLv,可得qCBLv. (建议用时:40分钟)一、单项选择题1图甲为手机及无线充电板图乙为充电原理示意图充电板接交流电源,对充电板供电,充电板内的送电线圈可产生交变磁场,从而使手机内的受电线圈产生交变电流,再经整流电路转变成直流电后对手机电池充电为方便研究,现将问题做如下简化:设送电线圈的匝数为n1,受电线圈的匝数为n2,面积为S,若在t1到t2时间内,磁场(垂直于线圈平面向上、可视为匀强磁场)的磁感应强度由B1均匀增加到B2.下列说法正
26、确的是()A受电线圈中感应电流方向由d到cBc点的电势高于d点的电势Cc、d之间的电势差为Dc、d之间的电势差为解析:选D.根据楞次定律可知,受电线圈内部产生的感应电流方向俯视为顺时针,受电线圈中感应电流方向由c到d,所以c点的电势低于d点的电势,故A、B错误;根据法拉第电磁感应定律可得c、d之间的电势差为UcdEn2,故C错误,D正确2(2017高考全国卷)如图,在方向垂直于纸面向里的匀强磁场中有一U形金属导轨,导轨平面与磁场垂直金属杆PQ置于导轨上并与导轨形成闭合回路PQRS,一圆环形金属线框T位于回路围成的区域内,线框与导轨共面现让金属杆PQ突然向右运动,在运动开始的瞬间,关于感应电流的
27、方向,下列说法正确的是()APQRS中沿顺时针方向,T中沿逆时针方向BPQRS中沿顺时针方向,T中沿顺时针方向CPQRS中沿逆时针方向,T中沿逆时针方向DPQRS中沿逆时针方向,T中沿顺时针方向解析:选D.金属杆PQ向右切割磁感线,根据右手定则可知PQRS中感应电流沿逆时针方向;原来T中的磁场方向垂直于纸面向里,金属杆PQ中的感应电流产生的磁场方向垂直于纸面向外,使得穿过T的磁通量减小,根据楞次定律可知T中产生顺时针方向的感应电流,综上所述,可知A、B、C项错误,D项正确3(2019镇江模拟)如图,虚线P、Q、R间存在着磁感应强度大小相等,方向相反的匀强磁场,磁场方向均垂直于纸面,磁场宽度均为
28、L.一等腰直角三角形导线框abc,ab边与bc边长度均为L,bc边与虚线边界垂直现让线框沿bc方向以速度v匀速穿过磁场区域,从c点经过虚线P开始计时,以逆时针方向为导线框中感应电流i的正方向,则下列四个图象中能正确表示it图象的是()解析:选A.由右手定则可知导线框从左侧进入磁场时,感应电流方向为逆时针方向,即沿正方向,且逐渐增大,导线框刚好完全进入P、Q之间的瞬间,电流由正向最大值变为零,然后电流方向变为顺时针(即沿负方向)且逐渐增加,当导线框刚好完全进入Q、R之间的瞬间,电流由负向最大值变为零,然后电流方向变为逆时针且逐渐增加,当导线框离开磁场时,电流变为零,故A正确4如图甲中水平放置的U
29、形光滑金属导轨NMPQ,MN接有开关S,导轨宽度为L,其电阻不计在左侧边长为L的正方形区域存在方向竖直向上磁场B,其变化规律如图乙所示;中间一段没有磁场,右侧一段区域存在方向竖直向下的匀强磁场,其磁感应强度为B0,在该段导轨之间放有质量为m、电阻为R、长为L的金属棒ab.若在图乙所示的时刻关闭开关S,则在这一瞬间()A金属棒ab中的电流方向为由a流向bB金属棒ab中的电流大小为C金属棒ab所受安培力方向水平向右D金属棒ab的加速度大小为解析:选C.根据楞次定律可得金属棒ab中的电流方向为由b流向a,故A错误;根据法拉第电磁感应定律可得感应电动势:ESL2,所以金属棒ab中的电流大小为:IL2,
30、故B错误;金属棒ab的电流方向为由b流向a,根据左手定则可得ab棒所受安培力方向水平向右,C正确;根据牛顿第二定律可得金属棒ab的加速度大小为a,故D错误5(2019南京模拟)如图所示,a、b两个闭合正方形线圈用同样的导线制成,匝数均为10匝,边长la3lb,图示区域内有垂直纸面向里的匀强磁场,且磁感应强度随时间均匀增大,不考虑线圈之间的相互影响,则()A两线圈内产生顺时针方向的感应电流Ba、b线圈中感应电动势之比为91Ca、b线圈中感应电流之比为34Da、b线圈中电功率之比为31解析:选B.由于磁感应强度随时间均匀增大,则根据楞次定律知两线圈内产生的感应电流方向皆沿逆时针方向,故A项错误;根
31、据法拉第电磁感应定律ENNS,而磁感应强度均匀变化,即恒定,则a、b线圈中的感应电动势之比为9,故B项正确;根据电阻定律R,且L4Nl,则3,由闭合电路欧姆定律I,得a、b线圈中的感应电流之比为3,故C项错误;由功率公式PI2R知,a、b线圈中的电功率之比为27,故D项错误6(2017高考全国卷)扫描隧道显微镜(STM)可用来探测样品表面原子尺度上的形貌为了有效隔离外界振动对STM的扰动,在圆底盘周边沿其径向对称地安装若干对紫铜薄板,并施加磁场来快速衰减其微小振动,如图所示无扰动时,按下列四种方案对紫铜薄板施加恒磁场;出现扰动后,对于紫铜薄板上下及左右振动的衰减最有效的方案是() 解析:选A.
32、施加磁场来快速衰减STM的微小振动,其原理是电磁阻尼,在振动时通过紫铜薄板的磁通量变化,紫铜薄板中产生感应电动势和感应电流,则其受到安培力作用,该作用阻碍紫铜薄板振动,即促使其振动衰减方案A中,无论紫铜薄板上下振动还是左右振动,通过它的磁通量都发生变化;方案B中,当紫铜薄板上下振动时,通过它的磁通量可能不变,当紫铜薄板向右振动时,通过它的磁通量不变;方案C中,紫铜薄板上下振动、左右振动时,通过它的磁通量可能不变;方案D中,当紫铜薄板上下振动时,紫铜薄板中磁通量可能不变综上可知,对于紫铜薄板上下及左右振动的衰减最有效的方案是A.7(2017高考天津卷)如图所示,两根平行金属导轨置于水平面内,导轨
33、之间接有电阻R.金属棒ab与两导轨垂直并保持良好接触,整个装置放在匀强磁场中,磁场方向垂直于导轨平面向下现使磁感应强度随时间均匀减小,ab始终保持静止,下列说法正确的是()Aab中的感应电流方向由b到aBab中的感应电流逐渐减小Cab所受的安培力保持不变Dab所受的静摩擦力逐渐减小解析:选D.根据楞次定律,感应电流产生的磁场向下,再根据安培定则,可判断ab中感应电流方向从a到b,A错误;磁场变化是均匀的,根据法拉第电磁感应定律,感应电动势恒定不变,感应电流I恒定不变,B错误;安培力FBIL,由于I、L不变,B减小,所以ab所受的安培力逐渐减小,根据力的平衡条件,静摩擦力逐渐减小,C错误,D正确
34、二、多项选择题8(2019高考全国卷)空间存在一方向与纸面垂直、大小随时间变化的匀强磁场,其边界如图(a)中虚线MN所示一硬质细导线的电阻率为、横截面积为S,将该导线做成半径为r的圆环固定在纸面内,圆心O在MN上t0时磁感应强度的方向如图(a)所示;磁感应强度B随时间t的变化关系如图(b)所示则在t0到tt1的时间间隔内()A圆环所受安培力的方向始终不变B圆环中的感应电流始终沿顺时针方向C圆环中的感应电流大小为D圆环中的感应电动势大小为解析:选BC.根据楞次定律可知在0t0时间内,磁感应强度减小,感应电流的方向为顺时针,圆环所受安培力水平向左,在t0t1时间内,磁感应强度反向增大,感应电流的方
35、向为顺时针,圆环所受安培力水平向右,所以选项A错误,B正确;根据法拉第电磁感应定律得Er2,根据电阻定律可得R,根据欧姆定律可得I,所以选项C正确,D错误9(2018高考全国卷)如图,两个线圈绕在同一根铁芯上,其中一线圈通过开关与电源连接,另一线圈与远处沿南北方向水平放置在纸面内的直导线连接成回路将一小磁针悬挂在直导线正上方,开关未闭合时小磁针处于静止状态下列说法正确的是()A开关闭合后的瞬间,小磁针的N极朝垂直纸面向里的方向转动B开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向里的方向C开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向外的方向D开关闭合并保持一段时间再断开后的瞬间,小
36、磁针的N极朝垂直纸面向外的方向转动解析:选AD.由电路可知,开关闭合瞬间,右侧线圈环绕部分的电流向下,由安培定则可知,直导线在铁芯中产生向右的磁场,由楞次定律可知,左侧线圈环绕部分产生向上的电流,则直导线中的电流方向由南向北,由安培定则可知,直导线在小磁针所在位置产生垂直纸面向里的磁场,则小磁针的N极朝垂直纸面向里的方向转动,A正确;开关闭合并保持一段时间后,穿过左侧线圈的磁通量不变,则左侧线圈中的感应电流为零,直导线不产生磁场,则小磁针静止不动,B、C错误;开关闭合并保持一段时间再断开后的瞬间,穿过左侧线圈向右的磁通量减少,则由楞次定律可知,左侧线圈环绕部分产生向下的感应电流,则流过直导线的
37、电流方向由北向南,直导线在小磁针所在处产生垂直纸面向外的磁场,则小磁针的N极朝垂直纸面向外的方向转动,D正确10如图甲所示,一个匝数为n的圆形线圈(图中只画了2匝),面积为S,线圈的电阻为R,在线圈外接一个阻值为R的电阻和一个理想电压表,将线圈放入垂直线圈平面指向纸内的磁场中,磁感应强度随时间变化规律如图乙所示,下列说法正确的是()A0t1时间内P端电势高于Q端电势B0t1时间内电压表的读数为Ct1t2时间内R上的电流为Dt1t2时间内P端电势高于Q端电势解析:选AC.0t1时间内,磁通量向里增大,根据楞次定律可知感应电流沿逆时针方向,线圈相当于电源,上端为正极,下端为负极,所以P端电势高于Q
38、端电势,故A正确;0t1时间内线圈产生的感应电动势EnnSnS,电压表的示数等于电阻R两端的电压UIRR,故B错误;t1t2时间内线圈产生的感应电动势EnnS,根据闭合电路的欧姆定律I,故C正确;t1t2时间内,磁通量向里减小,根据楞次定律,感应电流沿顺时针方向,所以P端电势低于Q端电势,故D错误11(2017高考全国卷)两条平行虚线间存在一匀强磁场,磁感应强度方向与纸面垂直边长为0.1 m、总电阻为0.005 的正方形导线框abcd位于纸面内,cd边与磁场边界平行,如图(a)所示已知导线框一直向右做匀速直线运动,cd边于t0时刻进入磁场线框中感应电动势随时间变化的图线如图(b)所示(感应电流
39、的方向为顺时针时,感应电动势取正)下列说法正确的是() A磁感应强度的大小为0.5 TB导线框运动速度的大小为0.5 m/sC磁感应强度的方向垂直于纸面向外D在t0.4 s至t0.6 s这段时间内,导线框所受的安培力大小为0.1 N解析:选BC.由题图(b)可知,导线框运动的速度大小v m/s0.5 m/s,B项正确;导线框进入磁场的过程中,cd边切割磁感线,由EBLv,得B T0.2 T,A项错误;由图可知,导线框进入磁场的过程中,感应电流的方向为顺时针方向,根据楞次定律可知,磁感应强度方向垂直纸面向外,C项正确;在0.40.6 s这段时间内,导线框正在出磁场,回路中的电流大小I A2 A,
40、则导线框受到的安培力FBIL0.220.1 N0.04 N,D项错误12水平面上固定相距为d的光滑直轨道MN和PQ,在N、Q之间连接不计电阻的电感线圈L和电阻R.匀强磁场磁感应强度为B,方向垂直导轨平面向上,在导轨上垂直导轨放置一质量为m,电阻不计的金属杆ab,在直导轨右侧有两个固定挡块C、D,CD连线与导轨垂直现给金属杆ab沿轨道向右的初速度v0,当ab即将撞上CD时速度为v,撞后速度立即变为零但不与挡块粘连以下说法正确的是()Aab向右做匀变速直线运动B当ab撞上CD后,将会向左运动Cab在整个运动过程中受到的最大安培力为D从ab开始运动到撞上CD时,电阻R上产生的热量小于mvmv2解析:
41、选BD.ab向右运动时受到向左的安培力而做减速运动,产生的感应电动势和感应电流减小,安培力随之减小,加速度减小,所以ab做非匀变速直线运动,故A错误当ab撞CD后,ab中产生的感应电动势为零,电路中电流要减小,线圈L将产生自感电动势,根据楞次定律可知自感电动势方向与原来电流方向相同,ab中电流方向沿ba,根据左手定则可知ab受到向左的安培力,故当ab撞CD后,将会向左运动,故B正确开始时,ab的速度最大,产生的感应电动势最大,由于线圈中产生自感电动势,此自感电动势与ab感应电动势方向相反,电路中的电流小于,最大安培力将小于BdI,故C错误从ab开始运动到撞CD时,由于线圈中有磁场能,所以电阻R
42、上产生的热量小于mvmv2,故D正确三、非选择题13(2019高考北京卷)如图所示,垂直于纸面的匀强磁场磁感应强度为B.纸面内有一正方形均匀金属线框abcd,其边长为L,总电阻为R,ad边与磁场边界平行从ad边刚进入磁场直至bc边刚要进入的过程中,线框在向左的拉力作用下以速度v匀速运动,求:(1)感应电动势的大小E;(2)拉力做功的功率P;(3)ab边产生的焦耳热Q.解析:(1)由法拉第电磁感应定律可得,感应电动势EBLv.(2)线圈中的感应电流I拉力大小等于安培力大小FBIL拉力的功率PFv.(3)线圈ab边电阻Rab时间tab边产生的焦耳热QI2Rabt.答案:(1)BLv(2)(3)14
43、如图,固定在水平绝缘桌面上的“”形平行导轨足够长,间距L1 m,电阻不计倾斜导轨的倾角53,并与R2 的定值电阻相连整个导轨置于磁感应强度B5 T、方向垂直倾斜导轨平面向上的匀强磁场中金属棒ab、cd的阻值为R1R22 ,cd棒质量m1 kg.ab与导轨间摩擦不计,cd与导轨间的动摩擦因数0.3,设最大静摩擦力等于滑动摩擦力现让ab棒从导轨上某处由静止释放,当它滑至某一位置时,cd棒恰好开始滑动sin 530.8,cos 530.6,g10 m/s2.(1)求此时通过ab棒的电流;(2)求cd棒消耗的热功率与ab棒克服安培力做功的功率之比;(3)若ab棒无论从多高的位置释放,cd棒都不动,则a
44、b棒质量应小于多少?解析:(1)ab棒沿倾斜导轨下滑切割磁感线产生的感应电流的方向是ba,通过cd棒的电流方向是cd.cd棒刚要开始滑动时,由平衡条件得:BIcdLcos 53f由摩擦力公式得:fNNmgBIcdLsin 53联立以上三式,得Icd A,Iab2Icd A.(2)根据题意画出等效电路如图所示:设IcdI,因为电阻R与cd棒并联,故电阻R上产生的热功率与cd棒产生的热功率相等,即PRPcdI2R又因为流经ab棒的电流为2I,故ab棒产生的热功率Pab4I2R整个回路产生的热功率P6I2R又因为回路中消耗的热功率源于ab棒克服安培力做功,所以cd棒消耗的热功率与ab棒克服安培力做功
45、的功率之比为.(3)ab棒在足够长的轨道下滑时,最大安培力只能等于自身重力在倾斜轨道平面上的分力,有:FAmabgsin 53cd棒所受最大安培力应为FA,要使cd棒不能滑动,需满足:FAcos 53由以上两式联立解得:mabkg2.08 kg.答案:见解析(二)(建议用时:40分钟)12017年9月13日,苹果在乔布斯剧院正式发布旗下三款iPhone新机型,除了常规的硬件升级外,三款iPhone还支持快充和无线充电图甲为兴趣小组制作的无线充电装置中的输电线圈示意图,已知线圈匝数n100,电阻r1 ,横截面积S1.5103 m2,外接电阻R7 .线圈处在平行于线圈轴线的磁场中,磁场的磁感应强度
46、随时间的变化如图乙所示,求:(1)t0.01 s时线圈中的感应电动势E;(2)00.02 s内通过电阻R的电荷量q;(3)00.03 s内电阻R上产生的热量Q.解析:(1)由图乙可知,t0.01 s时刻4 T/s根据法拉第电磁感应定律得Enn解得E0.6 V.(2)00.02 s内,I0.075 A,电荷量qIt,解得q1.5103 C.(3)00.02 s内,E0.6 V,I0.075 A,根据焦耳定律可以得到,回路中产生的焦耳热为Q1I2(Rr)t19104 J0020.03 s内,E1.2 V,I0.15 A,根据焦耳定律可以得到,回路中产生的焦耳热为Q2I2(Rr)t21.8103 J
47、所以Q总Q1Q22.7103 J而QQ总,解得Q2.362 5103 J.答案:(1)0.6 V(2)1.5103 C(3)2.362 5103 J2.某电磁缓冲车是利用电磁感应原理进行制动缓冲,它的缓冲过程可等效为:小车车底安装着电磁铁,可视为匀强磁场,磁感应强度大小为B,方向竖直向下;水平地面固定着闭合矩形线圈abcd,线圈的总电阻为R,ab边长为L,ad边长为2L,如图所示(俯视)缓冲小车(无动力)水平通过线圈上方,线圈与磁场的作用使小车做减速运动,从而实现缓冲已知小车总质量为m,受到地面的摩擦阻力为f,小车磁场刚抵达线圈ab边时,速度大小为v0,小车磁场刚抵达线圈cd边时,速度为零,求
48、:(1)小车缓冲过程中的最大加速度am的大小;(2)小车缓冲过程中通过线圈的电荷量q及线圈产生的焦耳热Q.解析:(1)线圈相对磁场向左切割磁感线,产生的最大电动势为EBLv0电流为I根据牛顿第二定律:BILfmam得到am.(2)通过线圈的电荷量qt,得到q由能量守恒定律得:mvQf2L得到Qmv2fL.答案:(1)(2)mv2fL3(2019常州二模)两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L,导轨上放置两根导体棒a和b,俯视图如图甲所示两根导体棒的质量均为m,电阻均为R,回路中其余部分的电阻不计,在整个导轨平面内,有磁感应强度大小为B的竖直向上的匀强磁场导体棒与导轨
49、始终垂直接触良好且均可沿导轨无摩擦地滑行,开始时,两棒均静止,间距为x0,现给导体棒a一水平向右的初速度v0,并开始计时,可得到如图乙所示的vt图象(v表示两棒的相对速度,即vvavb)(1)试证明:在0t2时间内,回路产生的焦耳热Q与磁感应强度B无关;(2)求t1时刻棒b的加速度大小;(3)求t2时刻两棒之间的距离解析:(1)t2时刻开始,两棒速度相等,由动量守恒定律有2mvmv0由能量守恒定律有Qmv(2m)v2解得Qmv所以在0t2时间内,回路产生的焦耳热Q与磁感应强度B无关(2)t1时刻有vavb回路中的电流I此时棒b所受的安培力FBIL由牛顿第二定律得棒b的加速度大小a1.(3)t2
50、时刻,两棒速度相同,均为v0t2时间内,对棒b,由动量定理有BLItmv0即Bqmv,得q根据法拉第电磁感应定律有根据闭合电路欧姆定律有而BSBL(xx0)解得t2时刻两棒之间的距离xx0.答案:见解析4如图所示,有一足够长的光滑平行金属导轨间距为L,折成倾斜和水平两部分,倾斜部分导轨的倾角与水平面的夹角为30,水平和倾斜部分均处在磁感应强度为B的匀强磁场中,水平部分磁场方向竖直向下,倾斜部分垂直斜面向下(图中未画出),两个磁场区互不叠加将两根金属棒a、b垂直放置在导轨上,并将b用轻绳通过定滑轮和小物体c连接已知两棒的长度均为L,电阻均为R,质量均为m,小物块c的质量也为m,不考虑其他电阻,不
51、计一切摩擦,运动过程中棒与导轨保持接触良好,且b始终不会碰到滑轮,重力加速度大小为g.(1)求锁定a,释放b的最终速度vm;(2)使a、b同时由静止释放,同时在a上施加一沿斜面向上的恒力F1.5mg,求达到稳定状态时a、b的速度;(3)若(2)中系统从由静止开始经时间t达到稳定状态,求过程中系统产生的焦耳热解析:(1)当b和c组成的系统做匀速运动时,b、c有最大速度,且为最终速度,根据平衡条件:mgBILIEBLvm综上得:vm.(2)对a棒:Fmgsin BILma1代入F、得:mgBILma1对于b和c系统:mgBIL2ma2所以任意时刻a1a221,由于运动时间相同,所以最终a、b的速度
52、之比v1v221其中I当二者加速度为0时,a,b,c达到稳定状态,综上得:a稳定速度:v1b、c稳定速度:v2.(3)设a棒沿着斜面移动的位移大小为x1,b、c棒的位移大小为x2,由于运动时间相同,且a1a221,则从静止开始至恰好稳定状态,a、b棒的位移大小之比:x1x221对于a、b、c系统,由功能关系得:(Fmgsin )x1mgx2mv(2m)vQ代入F、及得:Q3mgx2另解:对a棒,由动能定理得:(Fmgsin )x1W安1mv0对b、c组成的系统,由动能定理得:mgx2W安22mv0QW安1W安2解得,Q3mgx2以a为研究对象:从静止开始至达到稳定状态根据动量定理:(Fmgsin )tBLtmv10tq解得:q因为n(n1)综上得:q其中BL(x1x2)由解得:x2将式代入即得:x2(mgt)将式代入解得:Q.答案:见解析