1、【同步教育信息】一. 本周教学内容: 代数部分:复习平面直角坐标系和一次函数 几何部分:圆的有关概念和定理 代数部分:复习平面直角坐标系和一次函数 1. 知识结构: 2. 一次函数 (1)如果y=kx+b(k,b是常数,k0),那么y叫做x的一次函数。 当b=0时,一次函数y=kx+b就成为y=kx(k是常数,k0) 这时y叫x的正比例函数,一次函数的图象是直线。 (2)正比例函数y=kx和一次函数y=kx+b有下列性质: 当k0时,y随x的增大而增大 当k0,b0)的图象分别与x轴、y轴和直线x=4交于点A、B、C,直线x=4与x轴交于点D,四边形OBCD(O是坐标原点)的面积是10,若A点
2、的横坐标是,求这个一次函数的解析式。 分析:直线x=4是过x轴上的4这一点且与y轴平行的直线。 解:一次函数 例4. 已知:在O中,ABCD是圆内接四边形,过C点作DB的平行线交AB延长线于E。 求证:BEAD=BCCD 证明:连结AC 点评:证明圆中的有关线段成比例的问题,一般都转化为证明三角形相似的问题,也就是证明与圆有关的角相等的问题,常作的辅助线有:作直径所对的圆周角,连结圆上两点,构造出圆内接四边形。 例5. 已知:如图,TQ切O于A,与TQ相交于T,若TC=2cm 求:TA的长。 分析:连结OA可求出 解:连结OA, 又 【考点解析】 1. 求下列函数中自变量的取值范围: 解: 点
3、评:求自变量x的取值范围,就是使这些数学式子有意义的x的值,具体说来就是: (1)分母中含有自变量,则自变量取值必须使分母不等于零。 (2)二次根式的被开方式中含有自变量,则自变量取值必须使被开方式大于等于零。 (3)如果上述两种情况都存在,先求出式子中各部分允许的取值范围,再求出它们的公共部分。 求自变量x的取值范围的过程,实质上是解不等式或不等式组的过程,因此掌握一元一次不等式、一元一次不等式组的解法,是求函数自变量取值范围的基础。 的半圆与AC相切于点M。 (1)求证:MC=2CD (2)求:AC的长。 分析:证明两条线段之间成倍数关系的题有一定难度,在Rt中我们别忘记三角函数的使用。
4、证明:(1)连结OM。 点评:直线与圆相切等问题是研究直线与圆的位置关系的重点,学习时既要弄清它们的性质,更要掌握其判定方法,能灵活用于解题之中。 特别是对带有规律性的辅助线的添置更应熟悉,如: (1)已知一条切线时,常有三条性质:垂直于切线;过切点过圆心等可用。 (2)若已知两条相交切线,则又多了切线长等。圆心和两切线交点的连线平分两切线的夹角的性质,且由此又可推出一些结论。 (3)若已知两切线平行,则可证明圆心与两个切点的连线为直径。 这些都是添置辅助线的思路。【模拟试题】一. 填空题: 1. 已知点P在函数的图象上,若点P的纵坐标为5,则横坐标为_。 2. 函数中,自变量x的取值范围是_
5、。 3. 若函数是正比例函数,则m的值为_。 4. 函数的图象过,则_。 5. y与成正比例,则与x之间的函数解析式是_。 6. 一次函数的图象不经过的象限是_。 7. 已知一次函数,则图象与两坐标轴交点的坐标分别是_,_。 8. 如图是一次函数的图象,则_,b_。二. 选择题: 1. 一次函数,其中,则它的图象不经过( ) A. 第一象限B. 第二象限C. 第三象限D. 第四象限 2. 若要使函数的图象过原点,则的取值为( ) A. B. C. D. -1 3. 已知P在第三象限,且到x轴距离为3,到y轴距离为7,则点P的坐标为( ) A. (-3,-7)B. (-7,-3)C. (3,7)
6、D. (7,3) 4. 已知点与点N()关于原点对称,则x,y值为( ) A. B. C. D. 5. 函数的自变量取值范围是( ) A. 全体实数B. C. D. 6. 下列解析式中, 是一次函数的有( ) A. 1个B. 2个C. 3个D. 4个三. 1. 某工厂有一水池,容积为100米3,池内原有水40米3,要将水注满,已知每小时注水5米3,求水池中的水量Q与时间t的函数关系式,及t的取值范围。 2. 如图,直线与两坐标轴分别交于A、B两点,直线BC与直线AB垂直,垂足为B,求直线BC所对应的函数解析式。 3. 一次函数图象过A(1,5),B(-1,8)两点,(1)求函数解析式。(2)求
7、函数图象与坐标轴围成直角三角形的面积。 4. 已知:如图,圆O1交圆O2于C、F,EF切圆O2于F,交圆O1于E,AD过点C,交两圆于A、D,AB=3cm,BC=4cm,CD=5cm,求EF的长。 5. 已知:如图,圆O中P为弦AB的中点,过P点作半径OA的垂线交圆O于C、D,垂足为E,求证:PCPD=AEAO【疑难解答】 A 教师自己设计问题 问题1. 解答题的第2小题,如何利用这个条件? 问题2. 解答题的第1小题,t的取值范围应怎样考虑? B 对问题的解答 回答问题1:在中,这是上次课讲过的“双垂直图形”,可以利用射影定理求AC,进而求OC,得到点C的坐标,使问题得到解决。 回答问题2:t的取值范围要从实际问题出发,都考虑,要注满水池,还需要60米3的水,而每小时注水5米3,进而求出所需时间小时。【试题答案】一. 填空题: 1. -22. 3. 4. 5. 6. 第三象限 7. 8. 二. 1. B2. C3. B4. C5. D6. D三. 1. 2. 3. x0y0 4. 8cm 5. 连结OP高考资源网w。w-w*k&s%5¥u高考资源网w。w-w*k&s%5¥u