收藏 分享(赏)

福建省漳州市芗城中学高中数学新人教版必修一教案:1.3.2 函数的奇偶性 WORD版.doc

上传人:高**** 文档编号:1024367 上传时间:2024-06-04 格式:DOC 页数:3 大小:160KB
下载 相关 举报
福建省漳州市芗城中学高中数学新人教版必修一教案:1.3.2 函数的奇偶性 WORD版.doc_第1页
第1页 / 共3页
福建省漳州市芗城中学高中数学新人教版必修一教案:1.3.2 函数的奇偶性 WORD版.doc_第2页
第2页 / 共3页
福建省漳州市芗城中学高中数学新人教版必修一教案:1.3.2 函数的奇偶性 WORD版.doc_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

1、三维目标定向知识与技能结合具体函数了解奇偶性的含义,能利用函数的图象理解奇函数、偶函数;能判断一些简单函数的奇偶性,并利用奇偶性简化一些函数的图象。过程与方法体验奇函数、偶函数概念形成的过程,体会由形及数、数形结合的数学思想,并学会由特殊到一般的归纳推理、论证的思维方法。情感、态度与价值观通过绘制和展示优美的函数图象可以陶冶我们的情操,通过概念的形成过程可以增强我们主动交流的合作精神,并体会到事物的特殊性和一般性的关系,培养我们探究、推理的思维能力。教学重难点重点奇偶性概念的理解及应用。难点奇偶性的判断与应用。教学过程设计一、问题情境设疑引例:1、展示中心对称与轴对称的有关实例。2、观察下列四

2、个函数的图象 (1) (2) (3) (4)问题:以上图象有什么特征?如何由函数值体现?二、核心内容整合1、偶函数的概念(1)(2)的图象关于y轴对称,当自变量取一对相反数时,相应的两个函数值相等。偶函数:如果对于函数的定义域内任意一个x,都有,那么函数就叫做偶函数。如:,。2、奇函数的概念(3)(4)的图象关于原点对称,当自变量取一对相反数时,相应的两个函数值也是一对相反数。奇函数:如果对于函数的定义域内任意一个x,都有,那么函数就叫做奇函数。如:(图象关于原点对称)注意:(1)函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;(2)由函数的奇偶性定义可知,函数具有奇偶性

3、的一个必要条件是,对于定义域内的任意一个x,则 x也一定是定义域内的一个自变量(即定义域关于原点对称)。(3)奇、偶函数定义的逆命题也成立,即若为奇函数,则有成立;若为偶函数,则有成立。(4)如果一个函数是奇函数或偶函数,那么我们就说函数具有奇偶性。三、例题分析示例1、函数奇偶性的判断(1)定义域关于原点对称;(2)求,如果,则为奇函数;如果,则为偶函数;例1、判断下列函数的奇偶数:(1); (2);(3); (4)。知识提炼(3)非奇非偶函数:存在x0,使得且。如2、奇偶函数图象的性质(1)奇函数的图象关于原点对称;反过来,如果一个函数的图象关于原点对称,那么就称这个函数为奇函数。(2)偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于y轴对称,那么就称这个函数为偶函数。说明:奇偶函数图象的性质可用于:(1)简化函数图象的画法;(2)判断函数的奇偶性。xy0例2、已知函数是偶函数,它在y轴右边的图象如下图,画出在y轴左边的图象。拓展:如果函数是奇函数,图象又如何?四、学习水平反馈:P36,练习五、三维体系构建1、两个定义:对于定义域内的任意一个x,(1)如果都有为奇函数;(2)如果都有为偶函数2、两个性质: 一个函数为奇函数 它的图象关于原点对称 一个函数为偶函数 它的图象关于y轴对称六、课后作业:P39,习题13,A组6,B组3教学反思

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3