收藏 分享(赏)

福建省漳州市芗城中学高中数学新人教版必修一教案:2.doc

上传人:高**** 文档编号:1018365 上传时间:2024-06-04 格式:DOC 页数:5 大小:628.50KB
下载 相关 举报
福建省漳州市芗城中学高中数学新人教版必修一教案:2.doc_第1页
第1页 / 共5页
福建省漳州市芗城中学高中数学新人教版必修一教案:2.doc_第2页
第2页 / 共5页
福建省漳州市芗城中学高中数学新人教版必修一教案:2.doc_第3页
第3页 / 共5页
福建省漳州市芗城中学高中数学新人教版必修一教案:2.doc_第4页
第4页 / 共5页
福建省漳州市芗城中学高中数学新人教版必修一教案:2.doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、三维目标定向知识与技能(1)了解根式的概念,方根的概念及二者的关系;(2)理解分数指数幂的概念,掌握有理数指数幂的运算性质,并能运用性质进行计算和化简。过程与方法通过对实际问题的探究过程,感知应用数学解决问题的方法,理解分类讨论思想、化归与转化思想在数学中的应用。情感、态度与价值观通过对数学实例的探究,感受现实生活对数学的需求,体验数学知识与现实的密切联系。教学重难点根式、分数指数幂的概念及其性质。教学过程设计一、问题情境设疑问题1、根据国务院发展研究中心2000年发表的未来20年我国发展前景分析判断,未来20年,我国GDP(国内生产总值)年平均增长率可望达到7.3%,那么,在2001 202

2、0年,各年的GDP可望为2000年的多少倍?问题2、当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”,根据此规律,人们获得了生物体内碳14含量P与死亡年数t之间的关系,考古学家根据这个式子可以知道,生物死亡t年后,体内碳14含量P的值。二、核心内容整合(一)根式(1)平方根:;立方根:。(2)n次方根:如果,那么x叫做a的次方根。练习1、填空:(1)25的平方根等于_; (2)27的立方根等于_;(3) 32的五次方根等于_; (4)16的四次方根等于_;(5)a6的三次方根等于_; (6)0的七次方根等于_。性质:(1)当n为

3、奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,记为:。(2)当n为偶数时,正数的n次方根有两个,它们互为相反数,记为。(3)负数没有偶次方根,0的任何次方根都是0。(4)。练习2:求下列各式的值:(1); (2); (3); (4)。探究:一定成立吗?例1、求下列各式的值:(1); (2); (3); (4)。练习3:(1)计算;(2)若,求a的取值范围;(3)已知,则b a(填大于、小于或等于);(4)已知,求的值。(二)分数指数幂(1)整数指数幂:(简化运算,连加为乘,连乘为乘方)运算性质:(2)正分数指数幂引入:,小结:当根式的被开方数的指数能被根指数整除时,根式可以写成分

4、数作为指数的形式,(分数指数幂形式)思考:根式的被开方数不能被根指数整除时,根式是否也可以写成分数指数幂的形式?如:如何表示?规定:(3)负分数指数幂规定:如:规定:0的正分数指数幂等于0,0的负分数指数幂没有意义。由于整数指数幂,分数指数幂都有意义,因此,有理数指数幂是有意义的,整数指数幂的运算性质,可以推广到有理数指数幂,即:(1); (2); (3)。例题剖析例2、求值:例3、用分数指数幂的形式表示下列各式(其中a 0)例4、计算下列各式(式中字母都是正数)(1);(2)。例5、计算下列各式:(1);(2)。(三)无理指数幂问题:当指数是无理数时,如,我们又应当如何理解它呢?一般地,无理

5、数指数幂(a 0,是无理数)是一个确定的实数。有理数指数幂的运算性质同样适用于无理数指数幂。四、知识反馈:P54,练习,1,2,3。补充练习:1、已知,求的值。2、计算下列各式:(1);(2)。3、已知,求下列各式的值:(1);(2)。4、化简的结果是( )(A) (B) (C) (D)5、等于( )(A) (B) (C) (D)26、有意义,则的取值范围是 。7、若,则 。8、,下列各式总能成立的是( )(A) (B)(C) (D)9、化简的结果是( )(A) (B) (C) (D)五、三维体系构建1、根式与分数指数幂的意义2、根式与分数指数幂的相互转化3、有理指数幂的含义及其运算性质:(1); (2); (3)。六、课后作业:P59,习题2.1,A组:1,2,3,4;B组:2。教学反思:

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3