1、121排列(3课时)学习目标:知道排列数的意义,记住排列数公式及推导方法,从中体会“化归”的数学思想,并能运用排列数公式进行计算。学习重点:排列、排列数的概念学习难点:排列数公式的推导 自主学习:第一课时1问题:问题1从甲、乙、丙3名同学中选取2名同学参加某一天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动,有多少种不同的方法?分析:这个问题就是从甲、乙、丙3名同学中每次选取2名同学,按照参加上午的活动在前,参加下午活动在后的顺序排列,一共有多少种不同的排法的问题,共有6种不同的排法:甲乙 甲丙 乙甲 乙丙 丙甲 丙乙,其中被取的对象叫做元素解决这一问题可分两个步骤:第 1 步
2、,确定参加上午活动的同学,从 3 人中任选 1 人,有 3 种方法;第 2步,确定参加下午活动的同学,当参加上午活动的同学确定后,参加下午活动的同学只能从余下的 2 人中去选,于是有 2 种方法根据分步乘法计数原理,在 3 名同学中选出 2 名,按照参加上午活动在前,参加下午活动在后的顺序排列的不同方法共有 32=6 种,如图 1.2一1 所示把上面问题中被取的对象叫做元素,于是问题可叙述为:从3个不同的元素 a , b ,。中任取 2 个,然后按照一定的顺序排成一列,一共有多少种不同的排列方法?所有不同的排列是 ab,ac,ba,bc,ca, cb,共有 32=6 种问题2从1,2,3,4这
3、 4 个数字中,每次取出3个排成一个三位数,共可得到多少个不同的三位数?分析:解决这个问题分三个步骤:第一步先确定左边的数,在4个字母中任取1个,有4种方法;第二步确定中间的数,从余下的3个数中取,有3种方法;第三步确定右边的数,从余下的2个数中取,有2种方法由分步计数原理共有:432=24种不同的方法,用树型图排出,并写出所有的排列由此可写出所有的排法显然,从 4 个数字中,每次取出 3 个,按“百”“十”“个”位的顺序排成一列,就得到一个三位数因此有多少种不同的排列方法就有多少个不同的三位数可以分三个步骤来解决这个问题:第 1 步,确定百位上的数字,在 1 , 2 , 3 , 4 这 4
4、个数字中任取 1 个,有 4 种方法;第 2 步,确定十位上的数字,当百位上的数字确定后,十位上的数字只能从余下的 3 个数字中去取,有 3 种方法;第 3 步,确定个位上的数字,当百位、十位上的数字确定后,个位的数字只能从余下的 2 个数字中去取,有 2 种方法根据分步乘法计数原理,从 1 , 2 , 3 , 4 这 4 个不同的数字中,每次取出 3 个数字,按“百”“十”“个”位的顺序排成一列,共有432=24种不同的排法, 因而共可得到24个不同的三位数,如图1. 2一2 所示由此可写出所有的三位数: 123,124, 132, 134, 142, 143, 213,214, 231,
5、234, 241, 243,312,314, 321, 324, 341, 342, 412,413, 421, 423, 431, 432 。同样,问题 2 可以归结为:从4个不同的元素a, b, c,d中任取 3 个,然后按照一定的顺序排成一列,共有多少种不同的排列方法?所有不同排列是 abc, abd, acb, acd, adb, adc, bac, bad, bca, bcd, bda, bdc,cab, cad, cba, cbd, cda, cdb, dab, dac, dba, dbc, dca, dcb.共有432=24种.树形图如下 a b 2排列的概念:从个不同元素中,任
6、取()个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从个不同元素中取出个元素的一个排列说明:(1)排列的定义包括两个方面:取出元素,按一定的顺序排列; (2)两个排列相同的条件:元素完全相同,元素的排列顺序也相同3排列数的定义:从个不同元素中,任取()个元素的所有排列的个数叫做从个元素中取出元素的排列数,用符号表示注意区别排列和排列数的不同:“一个排列”是指:从个不同元素中,任取个元素按照一定的顺序排成一列,不是数;“排列数”是指从个不同元素中,任取()个元素的所有排列的个数,是一个数所以符号只表示排列数,而不表示具体的排列4排列数公式及其推导:由的意义:假定有排好顺序的2个空位
7、,从个元素中任取2个元素去填空,一个空位填一个元素,每一种填法就得到一个排列,反过来,任一个排列总可以由这样的一种填法得到,因此,所有不同的填法的种数就是排列数由分步计数原理完成上述填空共有种填法,=由此,求可以按依次填3个空位来考虑,=,求以按依次填个空位来考虑,排列数公式: ()说明:(1)公式特征:第一个因数是,后面每一个因数比它前面一个少1,最后一个因数是,共有个因数;(2)全排列:当时即个不同元素全部取出的一个排列全排列数:(叫做n的阶乘)另外,我们规定 0! =1 .例1用计算器计算: (1); (2); (3).解:用计算器可得:由( 2 ) ( 3 )我们看到,那么,这个结果有
8、没有一般性呢?即.排列数的另一个计算公式: =.即 = 例2解方程:3 解:由排列数公式得:, ,即,解得 或,且,原方程的解为例3解不等式:解:原不等式即,也就是,化简得:,解得或,又,且,所以,原不等式的解集为例4求证:(1);(2)证明:(1),原式成立(2)右边 原式成立说明:(1)解含排列数的方程和不等式时要注意排列数中,且这些限制条件,要注意含排列数的方程和不等式中未知数的取值范围;(2)公式常用来求值,特别是均为已知时,公式=,常用来证明或化简例5化简:;解:原式提示:由,得, 原式 说明: 第二课时例1(课本例2)某年全国足球甲级(A组)联赛共有14个队参加,每队要与其余各队在
9、主、客场分别比赛一次,共进行多少场比赛?解:任意两队间进行1次主场比赛与 1 次客场比赛,对应于从14个元素中任取2个元素的一个排列因此,比赛的总场次是=1413=182. 例2(课本例3)(1)从5本不同的书中选 3 本送给 3 名同学,每人各 1 本,共有多少种不同的送法? (2)从5种不同的书中买3本送给3名同学,每人各1本,共有多少种不同的送法?解:(1)从5本不同的书中选出3本分别送给3名同学,对应于从5个不同元素中任取 3 个元素的一个排列,因此不同送法的种数是=543=60. (2)由于有5种不同的书,送给每个同学的1本书都有 5 种不同的选购方法,因此送给 3 名同学每人各 1
10、 本书的不同方法种数是555=125. 例 8 中两个问题的区别在于: ( 1 )是从 5 本不同的书中选出 3 本分送 3 名同学,各人得到的书不同,属于求排列数问题;而( 2 )中,由于不同的人得到的书可能相同,因此不符合使用排列数公式的条件,只能用分步乘法计数原理进行计算例3(课本例4)用0到9这10个数字,可以组成多少个没有重复数字的三位数?分析:在本问题的。到 9 这 10 个数字中,因为。不能排在百位上,而其他数可以排在任意位置上,因此。是一个特殊的元素一般的,我们可以从特殊元素的排列位置人手来考虑问题解法 1 :由于在没有重复数字的三位数中,百位上的数字不能是O,因此可以分两步完
11、成排列第1步,排百位上的数字,可以从1到9 这九个数字中任选 1 个,有种选法;第2步,排十位和个位上的数字,可以从余下的9个数字中任选2个,有种选法(图1.2一 5) 根据分步乘法计数原理,所求的三位数有=998=648(个) .解法 2 :如图1.2 一6 所示,符合条件的三位数可分成 3 类每一位数字都不是位数有 A 母个,个位数字是 O 的三位数有揭个,十位数字是 0 的三位数有揭个根据分类加法计数原理,符合条件的三位数有=648个解法 3 :从0到9这10个数字中任取3个数字的排列数为,其中 O 在百位上的排列数是,它们的差就是用这10个数字组成的没有重复数字的三位数的个数,即所求的
12、三位数的个数是-=1098-98=648.对于例9 这类计数问题,可用适当的方法将问题分解,而且思考的角度不同,就可以有不同的解题方法解法 1 根据百位数字不能是。的要求,分步完成选 3 个数组成没有重复数字的三位数这件事,依据的是分步乘法计数原理;解法 2 以 O 是否出现以及出现的位置为标准,分类完成这件事情,依据的是分类加法计数原理;解法 3 是一种逆向思考方法:先求出从10个不同数字中选3个不重复数字的排列数,然后从中减去百位是。的排列数(即不是三位数的个数),就得到没有重复数字的三位数的个数从上述问题的解答过程可以看到,引进排列的概念,以及推导求排列数的公式,可以更加简便、快捷地求解
13、“从n个不同元素中取出 m (mn)个元素的所有排列的个数”这类特殊的计数问题 1.1节中的例 9 是否也是这类计数问题?你能用排列的知识解决它吗?课堂练习: 1若,则 ( ) 2与不等的是 ( ) 3若,则的值为 ( ) 4计算: ; 5若,则的解集是 6(1)已知,那么 ; (2)已知,那么= ;(3)已知,那么 ; (4)已知,那么 7一个火车站有8股岔道,停放4列不同的火车,有多少种不同的停放方法(假定每股岔道只能停放1列火车)?8一部纪录影片在4个单位轮映,每一单位放映1场,有多少种轮映次序?答案:1. B 2. B 3. A 4. 1,1 5. 6. (1) 6 (2) 18144
14、0 (3) 8 (4) 5 7. 1680 8. 24 第三课时例1(1)有5本不同的书,从中选3本送给3名同学,每人各1本,共有多少种不同的送法?(2)有5种不同的书,要买3本送给3名同学,每人各1本,共有多少种不同的送法?解:(1)从5本不同的书中选出3本分别送给3名同学,对应于从5个元素中任取3个元素的一个排列,因此不同送法的种数是:,所以,共有60种不同的送法(2)由于有5种不同的书,送给每个同学的1本书都有5种不同的选购方法,因此送给3名同学,每人各1本书的不同方法种数是:,所以,共有125种不同的送法说明:本题两小题的区别在于:第(1)小题是从5本不同的书中选出3本分送给3位同学,
15、各人得到的书不同,属于求排列数问题;而第(2)小题中,给每人的书均可以从5种不同的书中任选1种,各人得到那种书相互之间没有联系,要用分步计数原理进行计算例2某信号兵用红、黄、蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任意挂1面、2面或3面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的信号?解:分3类:第一类用1面旗表示的信号有种;第二类用2面旗表示的信号有种;第三类用3面旗表示的信号有种,由分类计数原理,所求的信号种数是: ,例3将位司机、位售票员分配到四辆不同班次的公共汽车上,每一辆汽车分别有一位司机和一位售票员,共有多少种不同的分配方案?分析:解决这个问题可以分为两步,第
16、一步:把位司机分配到四辆不同班次的公共汽车上,即从个不同元素中取出个元素排成一列,有种方法;第二步:把位售票员分配到四辆不同班次的公共汽车上,也有种方法,利用分步计数原理即得分配方案的种数解:由分步计数原理,分配方案共有(种)例4用0到9这10个数字,可以组成多少个没有重复数字的三位数?解法1:用分步计数原理:所求的三位数的个数是:解法2:符合条件的三位数可以分成三类:每一位数字都不是0的三位数有个,个位数字是0的三位数有个,十位数字是0的三位数有个,由分类计数原理,符合条件的三位数的个数是:解法3:从0到9这10个数字中任取3个数字的排列数为,其中以0为排头的排列数为,因此符合条件的三位数的
17、个数是-说明:解决排列应用题,常用的思考方法有直接法和间接法直接法:通过对问题进行恰当的分类和分步,直接计算符合条件的排列数如解法1,2;间接法:对于有限制条件的排列应用题,可先不考虑限制条件,把所有情况的种数求出来,然后再减去不符合限制条件的情况种数如解法3对于有限制条件的排列应用题,要恰当地确定分类与分步的标准,防止重复与遗漏例5(1)7位同学站成一排,共有多少种不同的排法?解:问题可以看作:7个元素的全排列5040(2)7位同学站成两排(前3后4),共有多少种不同的排法?解:根据分步计数原理:76543217!5040(3)7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?解
18、:问题可以看作:余下的6个元素的全排列=720(4)7位同学站成一排,甲、乙只能站在两端的排法共有多少种?解:根据分步计数原理:第一步 甲、乙站在两端有种;第二步 余下的5名同学进行全排列有种,所以,共有=240种排列方法(5)7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?解法1(直接法):第一步从(除去甲、乙)其余的5位同学中选2位同学站在排头和排尾有种方法;第二步从余下的5位同学中选5位进行排列(全排列)有种方法,所以一共有2400种排列方法解法2:(排除法)若甲站在排头有种方法;若乙站在排尾有种方法;若甲站在排头且乙站在排尾则有种方法,所以,甲不能站在排头,乙不能排在排尾的排法共有=2400种说明:对于“在”与“不在”的问题,常常使用“直接法”或“排除法”,对某些特殊元素可以优先考虑例6.从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?解法一:(从特殊位置考虑);解法二:(从特殊元素考虑)若选:;若不选:,则共有种;解法三:(间接法)