收藏 分享(赏)

普通高中数学课程标准(新人教A):必修4.doc

上传人:高**** 文档编号:1006701 上传时间:2024-06-04 格式:DOC 页数:3 大小:36.50KB
下载 相关 举报
普通高中数学课程标准(新人教A):必修4.doc_第1页
第1页 / 共3页
普通高中数学课程标准(新人教A):必修4.doc_第2页
第2页 / 共3页
普通高中数学课程标准(新人教A):必修4.doc_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

1、数 学 4 在本模块中,学生将学习三角函数、平面上的向量(简称平面向量)、三角恒等变换。 三角函数是基本初等函数,它是描述周期现象的重要数学模型,在数学和其他领域中具有重要的作用。在本模块中,学生将通过实例,学习三角函数及其基本性质,体会三角函数在解决具有周期变化规律的问题中的作用。 向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景。在本模块中,学生将了解向量丰富的实际背景,理解平面向量及其运算的意义,能用向量语言和方法表述和解决数学和物理中的一些问题,发展运算能力和解决实际问题的能力。 三角恒等变换在数学中有一定的应用,同时有利于发展学

2、生的推理能力和运算能力。在本模块中,学生将运用向量的方法推导基本的三角恒等变换公式,由此出发导出其他的三角恒等变换公式,并能运用这些公式进行简单的恒等变换。 内容与要求 1. 三角函数(约16课时) (1)任意角、弧度 了解任意角的概念和弧度制,能进行弧度与角度的互化。 (2)三角函数 借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义。 借助单位圆中的三角函数线推导出诱导公式(的正弦、余弦、正切),能画出的图象,了解三角函数的周期性。 借助图象理解正弦函数、余弦函数在,正切函数在上的性质(如单调性、最大和最小值、图象与x轴交点等)。 理解同角三角函数的基本关系式: 结合具体实例,了解的实

3、际意义;能借助计算器或计算机画出的图象,观察参数A,对函数图象变化的影响。 会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型。 2. 平面向量(约12课时) (1)平面向量的实际背景及基本概念 通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示。 (2)向量的线性运算 通过实例,掌握向量加、减法的运算,并理解其几何意义。 通过实例,掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义。 了解向量的线性运算性质及其几何意义。 (3)平面向量的基本定理及坐标表示 了解平面向量的基本定理及其意义。 掌握平面向量的正交分解

4、及其坐标表示。 会用坐标表示平面向量的加、减与数乘运算。 理解用坐标表示的平面向量共线的条件。 (4)平面向量的数量积 通过物理中“功”等实例,理解平面向量数量积的含义及其物理意义。 体会平面向量的数量积与向量投影的关系。 掌握数量积的坐标表达式,会进行平面向量数量积的运算。 能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。 (5)向量的应用 经历用向量方法解决某些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具,发展运算能力和解决实际问题的能力。 3. 三角恒等变换(约8课时) (1)经历用向量的数量积推导出两角差的余弦

5、公式的过程,进一步体会向量方法的作用。 (2)能从两角差的余弦公式导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系。 (3)能运用上述公式进行简单的恒等变换(包括引导导出积化和差、和差化积、半角公式,但不要求记忆)。 说明与建议 1. 在三角函数的教学中,教师应根据学生的生活经验,创设丰富的情境,使学生体会三角函数模型的意义。例如,通过单摆、弹簧振子、圆上一点的运动,以及音乐、波浪、潮汐、四季变化等实例,使学生感受周期现象的广泛存在,认识周期现象的变化规律,体会三角函数是刻画周期现象的重要模型(参见例1)。 2. 在三角函数的教学中,应发挥单位圆的作用。单

6、位圆可以帮助学生直观地认识任意角、任意角的三角函数,理解三角函数的周期性、诱导公式、同角三角函数关系式,以及三角函数的图象和基本性质。借助单位圆的直观,教师可以引导学生自主地探索三角函数的有关性质,培养他们分析问题和解决问题的能力。 3. 提醒学生重视学科之间的联系与综合,在学习其他学科的相关内容(如单摆运动、波的传播、交流电)时,注意运用三角函数来分析和理解。 4. 弧度是学生比较难接受的概念,教学中应使学生体会弧度也是一种度量角的单位(圆周的所对的圆心角或周角的)。随着后续课程的学习,他们将会逐步理解这一概念,在此不必深究。 5. 向量概念的教学应从物理背景和几何背景入手,物理背景是力、速

7、度、加速度等概念,几何背景是有向线段。了解这些物理背景和几何背景,对于学生理解向量概念和运用向量解决实际问题都是十分重要的。教师还可以引导学生运用向量解决一些物理和几何问题。例如,利用向量计算力使物体沿某方向运动所做的功,利用向量解决平面内两条直线平行与垂直的位置关系等问题。对于向量的非正交分解只要求学生作一般了解,不必展开。 6. 在三角恒等变换的教学中,可以引导学生利用向量的数量积推导出两角差的余弦公式,并由此公式推导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式。鼓励学生独立探索和讨论交流,引导学生推导积化和差、和差化积、半角公式,以此作为三角恒等变换的基本训练。 7.

8、 在本模块的教学中,应鼓励学生使用计算器和计算机探索和解决问题。例如,求三角函数值,求解测量问题,分析中参数变化对函数的影响等。在三角函数、平面上的向量和三角恒等变换相应的内容中可以插入数学探究或数学建模活动。参考案例 例1. 海水受日月的引力,在一定的时候发生涨落的现象叫潮,一般地早潮叫潮,晚潮叫汐。在通常情况下,船在涨潮时驶进航道,靠近船坞;卸货后落潮时返回海洋。下面是某港口在某季节每天的时间与水深关系表:时刻水深/米时刻水深/米时刻水深/米0005.09002.518005.03007.512005.021002.56005.015007.524005.0 (1)选用一个三角函数来近似描述这个港口的水深与时间的函数关系,给出整点时的水深的近似数值; (2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5米的安全间隙(船底与洋底的距离),该船何时能进入港口?在港口能呆多久? (3)若某船的吃水深度为4米,安全间隙为1.5米,该船在200开始卸货,吃水深度以每小时0.3米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3