椭圆中的焦半径与中点弦1. 基础结论 (1).椭圆两焦点为(过左焦点)(过右焦点)其中e是椭圆的离心率.(2).椭圆(过左焦点)(过右焦点)(3).若,则.2.焦半径公式:设是椭圆上一点,那么,进一步,有3. 中点弦公式:(所谓中点弦公式是直线与圆锥曲线相交时,两交点中点与弦所在直线的关系,一般不联立方程,而用点差法求解)椭圆:交点在x轴上时 直线与椭圆相交于点A、B设点A(),B()A、B在椭圆上 则 即 -得: 即 则 (其中M为A、B中点,O为原点)同理可以得到当焦点在y轴上,即椭圆方程为当直线交椭圆于A、B两点,M为A、B中点则2.典例(2018三卷)已知斜率为的直线与椭圆交于,两点,线段的中点为(1)证明:;(2)设为的右焦点,为上一点,且证明:,成等差数列,并求该数列的公差详解:(1)设,则.两式相减,并由得.由题设知,于是.由题设得,故.(2)由题意得,设,则.由(1)及题设得.又点P在C上,所以,从而,.于是.同理.所以.故,即成等差数列.设该数列的公差为d,则.将代入得.所以l的方程为,代入C的方程,并整理得.故,代入解得.所以该数列的公差为或.