1、第一章阶段复习课一、电场力的性质的描述1.库仑定律(1)表达式:,其中k=9109 Nm2/C2,叫静电力常量。(2)适用条件:库仑定律只适用于真空中的点电荷。2.电场强度(1)定义:放入电场中某点的电荷所受电场力F跟它的电荷量q的比值;(2)定义式:,其中F是电场力,q是试探电荷电量;(3)电场强度是矢量,电场中某一点的场强方向就是放在该点的正电荷所受电场力的方向;(4)点电荷的电场强度公式:。3.电场线(1)电场线是人们为了形象地描述电场特性而人为假设的线。从正电荷或无限远出发,终止于无限远或负电荷。(2)电场线的作用疏密表示电场的强弱,电场线上某点的切线方向就是该点的场强方向。(3)电场
2、线的特点电场线不是封闭曲线;同一电场中的电场线不相交。4.匀强电场电场强度的大小、方向处处相同的电场。匀强电场的电场线为平行直线,且分布均匀。二、电场能的性质1.电势差(1)定义电荷在电场中由一点移到另一点时,电场力所做的功WAB与电荷量q的比值叫电势差,又名电压。(2)定义式UAB=WAB/q。(3)单位电势差的单位为导出单位,在国际单位制中为伏特,简称伏。国际单位制中的单位符号为V。2.电势(1)定义电场中某点的电势,等于单位正电荷由该点移到参考点(零势点)时电场力做的功。(2)特点具有相对性,和零势面的选择有关;电势是标量,单位是伏特,符号为V;与电势差的关系:UAB=A-B。(3)注意
3、沿电场线的方向电势降低得最快。3.电场强度和电势差间的关系在匀强电场中,沿场强方向的两点间的电势差等于场强与这两点距离的乘积。(1)数学表达式:U=Ed;(2)该公式的适用条件是:仅适用于匀强电场;(3)d是匀强电场中两点间沿电场方向的距离。4.等势面(1)定义:电场中电势相等的各点构成的面。(2)特点一定跟电场线垂直,即跟电场的方向垂直;在同一等势面上移动电荷时,电场力不做功;电场线方向总是从电势高的等势面指向电势低的等势面;任意两个等势面都不会相交;等差等势面越密的地方电场强度越大。5.电势能(1)定义电荷在电场中所具有的与电荷位置有关的势能称为电势能。(2)电场力做功和电势能变化的关系电
4、场力做正功时,电势能减少;电场力做负功时,电势能增加;电场力做功的多少等于电势能的变化量。(3)特点电势能是电荷与所在电场共有的,且具有相对性,通常取无限远处或接地处(也就是大地)为电势能的零点。6.电场力做功(1)电荷在电场中移动时电场力做的功与移动路径无关,只取决于初末位置的电势差和电荷的电量。这一点与重力做功跟高度差的关系相似,可作比较理解、记忆。(2)计算电场力做功可使用公式WAB=qUAB,具体计算时,q、UAB、WAB均有正负,该公式适用于一切电场。7.静电屏蔽(1)静电感应现象把金属导体放在电场中,由于内部自由电子受电场力作用而定向移动,使导体的两个端面出现等量的异种电荷,这种电
5、荷重新分布的现象叫静电感应。当自由电子的定向移动停止时(即达到受力平衡时),导体处于静电平衡状态。(2)静电平衡状态的特点导体内部场强处处为零;整个导体是等势体,导体的表面是等势面;导体外部电场线与导体表面垂直;净(注意区分静)电荷只分布在导体的外表面上。(3)静电屏蔽处于静电平衡状态的导体,内部区域不再受外部电场的影响,这种现象叫静电屏蔽现象。三、电容器与电容、带电粒子在电场中的运动1.电容器两个彼此绝缘而又互相靠近的导体就组成一个电容器,其带电量是指电容器一个极板所带电荷量的绝对值。2.电容(1)定义式:,其中C与Q、U均无关,仅由电容器本身决定。(2)单位:1 F=1 C/V=106 F
6、=1012 pF。3.平行板电容器电容C跟两极板正对面积S、板间介质介电常数r成正比,跟两极板间距离d成反比,即,其中k为静电力常量。在分析有关平行板电容器的Q、E、U和C的关系时,主要有以下两种情况:(1)保持两极板与电源相连,则电容器两极板间电压不变;(2)充电后断开电源,则带电量不变。4.带电粒子在电场中的运动(假设只受电场力作用)(1)带电粒子的加速粒子动能的变化量等于电势能的减少量,。(2)带电粒子的偏转运动状态分析:带电粒子以速度v0垂直于电场线方向飞入匀强电场时,受到恒定的与初速度方向垂直的电场力作用做类平抛运动(轨迹为抛物线)。运动特点:类平抛运动。基本规律:设粒子带电量为q,
7、质量为m,两平行金属板间的电压为U,板长为L,板间距为d,加速度:a=F/m=qE/m=qU/md;运动时间:;离开电场时的偏转量:;速度的偏转角:;而位移的偏转角。【易错警示】易错点1 误认为电荷的运动轨迹一定是电场线。分析:一般情况下电荷的运动轨迹与电场线不会重合,除非满足以下条件:(1)电场线是直线。(2)带电粒子只受电场力作用,或受其他力,但其他力的方向沿电场线所在直线。(3)带电粒子初速度为零或初速度方向沿电场线所在的直线。以上三个条件都满足时电荷的运动轨迹才会与电场线重合。易错点2 错误地认为电势越高的地方电场强度越大。分析:电场强度的大小与电势的高低没有必然的关系。电势高的地方,
8、电场强度可能较大,也可能较小。匀强电场中,电势不同的地方,电场强度相同。易错点3 错误地认为电势越高的地方电势能越大。分析:对于正电荷来说,根据Ep=q可知,电势高的地方电势能较大;但对于负电荷,电势越高的地方电势能越小。易错点4 混淆电势与电势差两个概念。分析:电势差为电场中两点间的电势之差,UAB=A-B,电场中某点的电势在数值上等于该点与零电势点的电势之差。电势大小与零电势面的选取有关,即电势具有相对性,而电势差没有这种性质。易错点5 错误地认为处于静电平衡的导体内部由于没有净电荷,电势为零。分析:处于静电平衡的导体内部无净电荷,场强处处为零,但整个导体为等势体,导体内部与表面的电势相等
9、,不为零。易错点6 错误地认为电容器所带电量为其两极板所带电量绝对值之和。分析:电容器的带电量指的是电容器一个极板所带电荷量的绝对值。而不是电容器两极板所带电荷量之和或者是两极板所带电荷量绝对值之和。一、库仑定律的应用1.应用库仑定律解题时,只需代入电荷量的绝对值,求得静电力的大小,再根据电性判断静电力的方向。2.库仑定律只适用于真空中的点电荷。点电荷是一个理想化的物理模型。当带电体间的距离远大于带电体的自身大小时,可以视为点电荷而应用库仑定律,否则不再适用。当把物体等效为点电荷时,注意“点”的位置与电荷分布有关。3.对一个与外界没有电荷交换的电学系统来说,电荷总量不变。两个完全相同的金属小球
10、或带电体接触,如果两球带同种电荷,则电荷总量平分;如果两球带异种电荷,则正负电荷先中和,剩余电荷量平分。【典例1】令一个半径为R的绝缘球壳均匀地带上总量为Q的正电荷,再设法将一个带有+q电量的点电荷放在这个球壳的球心O位置。求:(1)球壳与点电荷之间的静电力。(2)如果将球壳的A处挖去很小的一块(其电量为Q),你能求出球壳剩下部分对点电荷的静电力吗?如果不能,说明理由;如果能,求出这个力的大小和方向。【解析】(1)球壳不能视为点电荷,可以看做是很多点电荷组成的。由对称性可知,关于球心对称的两个点电荷对+q的静电力等大反向,合力为零。则球壳上的所有电荷与点电荷q之间的静电力为零。(2)能。由对称
11、性可知,挖去A处之前,A处电荷对点电荷的力与球壳上其余各点对点电荷的力等大反向。则挖去A处后,球壳剩下部分对点电荷的静电力等于原先A处电荷对点电荷的静电力。由于挖去的很小,故Q可视为点电荷。因此,方向由O指向A。答案:(1)零(2)能,大小为,方向由O指向A二、场强、电势、电势差、电势能的判断与计算1.场强大小的判断(1)根据场强的计算公式。(2)根据电场线判断:电场线的疏密反映场强的大小。(3)根据等势面判断:等差等势面的疏密反映场强的大小。2.电势的高低判断与计算(1)根据电场线判断:沿着电场线方向电势降低。这是判断电势高低最常用、最直观的方法。(注意与场强大小的判断的区别)。(2)根据电
12、势差的定义式判断:若UAB0,则AB;若UAB0,则ABC B.ECEBEAC.UABUBC D.UABUBC【解析】选A、B、C。A、B、C三点处在同一条电场线上,沿着电场线的方向电势降低,故ABC,A正确;由电场线的疏密程度可看出电场强度大小关系为ECEBEA,B正确;电场线密的地方电势降落较快,故UBCUAB,C正确,D错误。三、带电粒子在电场中的加速和偏转1.带电粒子只受静电力作用加速运动时,常用公式。2.带电粒子在匀强电场中的偏转问题,研究方法是运动的合成和分解。3.不同的带电粒子从静止经过同一电场加速后进入同一偏转电场,它们在电场中的偏转角度和偏转距离总是相同的。4.粒子从偏转电场中射出时,其速度的反向延长线与初速度方向交于板的中点处。【典例3】如图所示,边长为L的正方形区域abcd内存在着匀强电场。电量为q、动能为Ek的带电粒子从a点沿ab方向进入电场,不计重力。(1)若粒子从c点离开电场,求电场强度的大小和粒子离开电场时的动能;(2)若粒子离开电场时动能为Ek,则电场强度为多大?【解析】(1)将粒子的运动分解:水平方向Lv0t竖直方向解得由动能定理得qELEkt-Ek解得EktqELEk5Ek(2)若粒子由bc边离开电场,则:Lv0t解得若粒子由cd边离开电场,则:qELEkEk解得答案:(1)5Ek (2)或